Finite Element Modeling of Superplastic Forming of Tubular Shapes

2010 ◽  
Vol 433 ◽  
pp. 179-184 ◽  
Author(s):  
Mohammed A. Nazzal ◽  
Fadi K. Abu-Farha

Most of the work done on superplastic forming is related to sheet metal forming. Very limited studies have been directed toward investigating the superplastic tube forming process. In this work, Finite Element (FE) simulations are carried out in order to simulate the superplastic tube forming process. The analysis is conducted for the superplastic magnesium alloy AZ31 at 400°C. The results clearly demonstrate that there is a significant difference between tube forming and sheet metal forming in terms of forming pressure profiles. In addition, the effects of tube radius, free forming length, and contact on the tube forming process are investigated.

2014 ◽  
Vol 626 ◽  
pp. 518-523
Author(s):  
C.P. Lai ◽  
Luen Chow Chan

The titanium tailor-welded blanks (Ti-TWBs) are being developed in different industries such as automobile and aerospace, combining the advantages of both tailor-welded blanks technology and titanium alloys. In recent decades, computer simulation of sheet metal forming processes has been employed increasingly over conventional production test and adjustment methodology to achieve the optimum and cost-effective operation procedures. Recently, certain amounts of theoretical analysis for the sheet metal forming process have been developed. However, these analyses could not be applied directly to the material under multi-stage forming process. Thus, some researchers have developed a damage-based model to predict the instability and failure of sheet metals, particularly for the above Ti-TWBs, with consideration of material damage under discontinuous or proportional loading strain paths. So far this model has been used and proved to be successful to predict formability of selected sheets of steel and aluminium alloy. However, the application of the damage-coupled model has yet to be extended to the Ti-TWBs under thermal multi-stage forming operation.The main objective of this paper is to investigate numerically the formability of Ti-TWBs under multi-stage forming process with experimental verification. Titanium alloy sheets (Ti-6Al-4V) in thickness of 0.7mm and 1.0mm were selected and laser-welded the specimen of Ti-TWBs. The model based on the damage mechanics is introduced to predict the thermal formability of Ti-TWBs with change of strain paths. In this study, the anisotropic damage model incorporate with the finite element codes and user-define material subroutine were developed to predict the formability of Ti-TWBs with change of strain paths. The mechanical properties and damage parameters of Ti-TWBs for the simulation were measured experimentally. The simulation of Ti-TWB under multi-stage forming process were then conducted and validated experimentally at similar forming conditions. The predicted results have been found to agree well with those obtained from the experiments. This analysis can be applied readily to design and manufacture TWB components or structures so as to satisfy the need of such market demands.


2011 ◽  
Vol 473 ◽  
pp. 875-880 ◽  
Author(s):  
Yalin Kiliclar ◽  
Roman Laurischkat ◽  
Stefanie Reese ◽  
Horst Meier

The principle of robot based incremental sheet metal forming is based on flexible shaping by means of a freely programmable path-synchronous movement of two tools, which are operated by two industrial robots. The final shape is produced by the incremental infeed of the forming tool in depth direction and its movement along the geometry’s contour in lateral direction. The main problem during the forming process is the influence on the dimensional accuracy resulting from the compliance of the involved machine structures and the springback effects of the workpiece. The project aims to predict these deviations caused by resiliences and to carry out a compensative path planning based on this prediction. Therefore a planning tool is implemented which compensates the robot’s compliance and the springback effects of the sheet metal. Finite element analysis using a material model developed at the Institute of Applied Mechanics (IFAM) [1] has been used for the simulation of the forming process. The finite strain constitutive model combines nonlinear kinematic and isotropic hardening and is derived in a thermodynamical setting. It is based on the multiplicative split of the deformation gradient in the context of hyperelasticity. The kinematic hardening component represents a continuum extension of the classical rheological model of Armstrong–Frederick kinematic hardening which is widely adopted as capable of representing the above metal hardening effects. The major problem of low-order finite elements used to simulate thin sheet structures, such as used for the experiments, is locking, a non-physical stiffening effect. Recent research focuses on the large deformation version of a new eight-node solid-shell finite element based on reduced integration with hourglass stabilization. In the solid-shell formulation developed at IFAM ([2], [3]) the enhanced assumed strain (EAS) concept as well as the assumed natural strain (ANS) concept are implemented to circumvent locking. These tools are very important to obtain a good correlation between experiment and simulation.


2015 ◽  
Vol 60 (3) ◽  
pp. 1881-1886
Author(s):  
J. Adamus ◽  
K. Dyja ◽  
M. Motyka

Abstract The paper presents a method for determining forming limit curves based on a combination of experiments with finite element analysis. In the experiment a set of 6 samples with different geometries underwent plastic deformation in stretch forming till the appearance of fracture. The heights of the stamped parts at fracture moment were measured. The sheet - metal forming process for each sample was numerically simulated using Finite Element Analysis (FEA). The values of the calculated plastic strains at the moment when the simulated cup reaches the height of the real cup at fracture initiation were marked on the FLC. FLCs for stainless steel sheets: ASM 5504, 5596 and 5599 have been determined. The resultant FLCs are then used in the numerical simulations of sheet - metal forming. A comparison between the strains in the numerically simulated drawn - parts and limit strains gives the information if the sheet - metal forming process was designed properly.


2012 ◽  
Vol 445 ◽  
pp. 3-8 ◽  
Author(s):  
Yusof Daud ◽  
Margaret Lucas ◽  
Khairur Rijal Jamaludin

Finite element (FE) model of die necking process of an aluminium hollow thin cylinder has been developed. The input parameters of material properties and coefficient of friction, µ for the model have been deducted from our previous experimental study. Later the models have been validated against experimental data as reported in the previous studies. For the die necking process, the FE model has successfully to predict how much the original diameter of the aluminium hollow cylinder can be maximised necked with and without applying ultrasonic vibration. FE models showed that the application of ultrasonic vibration during the necking process has reduced buckling of the cylinder body if compared to the necking process without ultrasonic. The benefit of applying ultrasonic vibration in sheet metal forming process has been related to the reduction of interface friction between die and specimen.


Sign in / Sign up

Export Citation Format

Share Document