Effect of Mesh Size of Finite Element Analysis in Modal Analysis for Periodic Symmetric Struts Support

2011 ◽  
Vol 462-463 ◽  
pp. 1008-1012 ◽  
Author(s):  
Wei Bing Liu ◽  
Mamtimin Gheni ◽  
Lie Yu

Meshing for finite element analysis accuracy plays a very important part in numerical simulation of Periodic Symmetric Struts Support (PSSS). Different accuracy can be obtained by different element sizes or types. Three element types and eight element sizes are used for comparing the accuracy of modal analysis in this paper. Comparing with the mutual relations of different accuracy, the scientific basis is provided for selecting the correct mesh size and improves the efficiency of numerical calculation in modal analysis.

2011 ◽  
Vol 213 ◽  
pp. 419-426
Author(s):  
M.M. Rahman ◽  
Hemin M. Mohyaldeen ◽  
M.M. Noor ◽  
K. Kadirgama ◽  
Rosli A. Bakar

Modeling and simulation are indispensable when dealing with complex engineering systems. This study deals with intelligent techniques modeling for linear response of suspension arm. The finite element analysis and Radial Basis Function Neural Network (RBFNN) technique is used to predict the response of suspension arm. The linear static analysis was performed utilizing the finite element analysis code. The neural network model has 3 inputs representing the load, mesh size and material while 4 output representing the maximum displacement, maximum Principal stress, von Mises and Tresca. Finally, regression analysis between finite element results and values predicted by the neural network model was made. It can be seen that the RBFNN proposed approach was found to be highly effective with least error in identification of stress-displacement of suspension arm. Simulated results show that RBF can be very successively used for reduction of the effort and time required to predict the stress-displacement response of suspension arm as FE methods usually deal with only a single problem for each run.


2013 ◽  
Vol 815 ◽  
pp. 860-867
Author(s):  
Yu Gu ◽  
Shao Xiong Li ◽  
Rui Li ◽  
Qiang Li

Vibration results from situation when the inherent frequency close to the external exciting force during the operation of the motor, so accurate and effective calculation of the natural frequency of the motor has an important significance to damping noise. By numerical simulation model and the ANSYS finite element modal, the inherent frequencies were got of the motor and comparison results verify the effectiveness of the motor model. The effect of the modulus of elasticity of the softening layer between the motor and the ground to the inherent frequency was researched intensively, and puts forward related suggestions.


2014 ◽  
Vol 962-965 ◽  
pp. 2957-2960
Author(s):  
Qian Peng Han ◽  
Bo Peng

This article summarized the general process of parametric modeling and finite element analysis of spur gear,PRO/E used to create parametric model,and Patran used to finite element analysis.Parametric modeling can reduce design period of the similar products,and modal analysis provide the basis for the selection and optimization of gear.


2009 ◽  
Vol 16-19 ◽  
pp. 1248-1252
Author(s):  
Chun Dong Zhu ◽  
Man Chun Zhang ◽  
Lin Hua

As an important forged part of an automobile, the inner hole of the half-shaft bushing must be formed directly. However, the process requires many steps, and how the forging, or deformation, is spread over the production steps directly affects the die life and forging force required. In this paper, the three steps involved in directly forging a half shaft bushing's inner hole are simulated using the two-dimensional finite element method. Further more, we improve the forging process. From numerical calculation, the improved necessary forging force is found to be only half the original force, and the die life is doubled.


2011 ◽  
Vol 143-144 ◽  
pp. 437-442
Author(s):  
Bao Hong Tong ◽  
Yin Liu ◽  
Xiao Qian Sun ◽  
Xin Ming Cheng

A dynamic finite element analysis model for cylindrical roller bearing is developed, and the complex stress distribution and dynamic contacting nature of the bearing are investigated carefully based on ANSYS/LS-DYNA. Numerical simulation results show that the stress would be bigger when the element contacting with the inner or outer ring than at other times, and the biggest stress would appear near the area that roller contacting with the inner ring. Phenomenon of stress concentration on the roller is found to be very obvious during the operating process of the bearing system. The stress distributions of different elements are uneven on the same side surface of roller in its axis direction. Numerical simulation results can give useful references for the design and analysis of rolling bearing.


2018 ◽  
Vol 25 (4) ◽  
pp. 905-920 ◽  
Author(s):  
Diantang Zhang ◽  
Guyu Feng ◽  
Mengyao Sun ◽  
Song Yu ◽  
Yuanhui Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document