compaction processes
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 23)

H-INDEX

15
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7763
Author(s):  
Aleksandra Biszczanik ◽  
Krzysztof Wałęsa ◽  
Mateusz Kukla ◽  
Jan Górecki

The efficiency of material consumption is an important consideration for production processes; this is particularly true for processes that use waste materials. Dry ice extrusion serves as a good example. An examination of the literature on this subject leads to an observation that the commercially available machines for dry ice compression are characterized by a high value of working force. Consequently, the effectiveness of the source consumption, electric energy and carbon dioxide, is very low. The subject of the experimental research presented in the article is the influence of the density of dry ice on the value of Young’s modulus. The first part of the article presents the test methodology and the special test stand that was developed to accommodate the unique characteristics of solid-state carbon dioxide. The test results present the characteristics of compaction and relaxation used as the basis for determining the value of Young’s modulus. Based on the test results obtained for various material density values, the characteristics of Young’s modulus are developed and graphed as a function of the density. The presented results are important for furthering the research on the development of extrusion and compaction processes; for example, using the Drucker–Prager/Cap model for the purpose of optimizing the geometrical characteristics of the work assembly components.


MRS Advances ◽  
2021 ◽  
Vol 6 (27) ◽  
pp. 674-681
Author(s):  
Christopher M. Barr ◽  
Marcia Cooper ◽  
Jeremy Lechman ◽  
Daniel C. Bufford

AbstractMicrostructures and corresponding properties of compacted powders ultimately depend on the mechanical response of individual particles. In principle, computational simulations can predict the results of powder compaction processes, but the selection of appropriate models for both particle–particle interactions and particle deformations across all relevant length scales remain nontrivial tasks, especially in material systems lacking detailed mechanical property information. The work presented here addresses these issues by conducting uniaxial compressions in situ inside of a scanning electron microscope to characterize the mechanical response of individual micron-sized particles of a molecular crystal, hexanitrohexaazaisowurtzitane (CL-20). This experimental approach enabled the collection of quantitative force and displacement data alongside simultaneous imaging to capture morphology changes. The results reveal information about elastic deformation, yield, plastic deformation, creep, and fracture phenomena. Accordingly, this work demonstrates a generalizable approach for assessing the mechanical response of individual micron-sized molecular crystal particles and utilizing those responses in particle-level models. Graphic abstract


2021 ◽  
Vol 71 (343) ◽  
pp. e256
Author(s):  
E. Bernat-Maso ◽  
L. Gil ◽  
M.J. Lis ◽  
E. Teneva

Interaction between microbially induced calcium carbonate precipitation (MICP) and compaction procedures to stabilise raw soil materials has been studied with the aim of producing earthen engineering structures. Initial tests to optimise MICP in aqueous medium and in selected soils were performed. MICP and compaction were finally applied to assess medium-size elements. The main result was that sandy soils should be compacted before irrigation treatment to close the existing voids and prevent bacterial sweeping, whereas clayey soils should be compacted after irrigation treatment to avoid the plugging effect. MICP improved small sand soil compressive strength by up to 32% over the value reached by compaction alone. However, MICP had no positive effect on coarse soils and soils with an optimum particle size distribution: MICP treatment was not able to fill large connected voids in the first case and it caused little void generation due to bacteria sporulation in the second.


Author(s):  
Adam J. T. Hand ◽  
Timothy Aschenbrener ◽  
Nam Tran ◽  
Fabricio Leiva

It is well established that in-place density significantly influences asphalt pavement performance and service life. This paper discusses solutions to challenges that agencies and contractors often face when trying to achieve density requirements, or increase density, while eliminating compaction-related mat defects during the construction process. The basics of the asphalt pavement compaction processes, equipment, operations, and asphalt mixture densification are first presented, followed by information collected on a series of FHWA sponsored departments of transportation (DOTs) density demonstration projects. The authors then summarize the root causes associated with challenges in obtaining the desired density without compaction-related mat defects in a series of categories based on the DOT demonstration projects and experience assisting contractors with obtaining density on hundreds of projects. Examples are described for each category along with potential opportunities for improvements to overcome them. The demonstration projects illustrated that it is possible to make improvements when agencies and contractors embrace the idea of increasing density and reducing mat defects.


2021 ◽  
Author(s):  
Naveenkumar Votarikari ◽  
N. Kishore Nath ◽  
Poosa Ramesh Babu

Abstract The influence of composites preparation methods in the aerospace industry has evolved quite new challenges achieving better and desired properties. In this context, this work deals with the preparation of nano silica-based composite through the powder metallurgy technique. The composites prepared were tested for material characterization with morphological, X-Ray diffraction, and mechanical characterization with hardness, tensile strength, density, and porosity tests. The results revealed that the nano-silica has interfacial interaction with aluminum alloy. The strength of Al6061 nano-silica composite has the effect of sintering and compaction processes. Crystallization of Al6061 composite has been influenced by sintering time for nano-silica reinforcement. A compound was formed during the ball milling process during the blending of Al6061 and nano-silica powders was examined and detailed through material characterization. It revealed the structure as a mesoporous structure which created a route for better-impregnated bearing material. Al6061 nano-silica impregnated bearing with porous structure holds the lubricating fluid which is serving the purpose of self-lubrication and self-cooling by dissipating the heat generated during the running conditions. The strengthening mechanism like the Orowan effect and dislocation density strengthening enhanced the process and revealed the effect on nano-silica content. The wettability of silica was improved through binder in PM and the preheating process of powders. Hardness incremented up to 21% of base alloy through the PM technique.


2021 ◽  
Author(s):  
Pablo J. Gonzalez ◽  
Maria Charco ◽  
Antonio Eff-Darwich ◽  
Anthony Lamur ◽  
Rayco Marrero ◽  
...  

<p>Groundwater in volcanic islands is usually the main source of freshwater, and it is essential for sustainable development. In Tenerife Island, groundwater extraction occurs by drilling horizontal water tunnels, called water galleries, as well as numerous coastal wells. Since around 1900, but especially since the 1960s, hundreds of water tunnels have been drilled for agriculture and freshwater supply. This has resulted in a sustained extraction of groundwater larger than the natural recharge, leading to a general water table decline, locally up to 200 m of down drop. Since 2000, satellite radar interferometry (InSAR) applied to measure surface deformation has located several subsidence bowls (e.g., Fernandez et al., 2009). The localized surface deformation patterns have been correlated with water table changes and hence aquifer compaction. However, no further investigations have been carried out to confirm which characteristics (chemical composition, texture, porous network, alterations, etc.) of the volcanic materials can control compaction process, and to which extent porous volcanic units, the most abundant material in Tenerife, can compact to explain the observed surface deformation. This lack of knowledge might affect the effectiveness of water management policies.</p><p>To investigate the compaction processes affecting the volcanic aquifer, we propose to set up a passive hydrogeophysical monitoring network composed of geodetic and seismological instruments. However, considering logistic constrains it is desirable to have as low as possible number of observation sites, whist maximizing the detection and characterization of the aquifer dynamics. Here, we explore different network configurations to maximize the spatial and temporal characterization of the compaction processes using machine learning methods (low-rank matrix techniques). We pose the network design as an optimization process with the aim to parsimoniously have as fewer as possible ground station sites, and have a low error on reconstructing spatiotemporal land subsidence observations. Land subsidence rates were estimated using Sentinel-1 radar interferometric observations from October 2014 to December 2020. This method allows for an optimal network configuration, with respect to the dual penalty function, which facilitate the decision making. Nevertheless, this type of network design should be regarded as proposals because some station site conditions are a priori unknown. Although, one could modify the penalty function to optimize the network considering additional types of information, e.g., geological materials, groundwater table time series, etc.</p><p>Fernandez, J., et al. (2009), Gravity-driven deformation of Tenerife measured by InSAR time series analysis, Geophys. Res. Lett., 36, L04306, doi:10.1029/2008GL036920.</p>


Author(s):  
Igor Grigorev ◽  
Olga Kunickaya ◽  
Albert Burgonutdinov ◽  
Evgeniy Tikhonov ◽  
Valentin Makuev ◽  
...  

An increasing demand for forest products incites a large number of log transportation operations, which may lead to negative consequences for the soil and the ecosystem as a whole. This paper is focused on establishing a mathematical model to estimate the soil deformation and compaction processes under tires of wheeled forest machines and individual components of the skidding system such as forwarder, limbs, butts, and tops of tree-lengths in high latitudes, permafrost soil and forests. The method applied is based on simulating the impact processes of elastic tires and the skidding system on the soil through a mathematical device for the measurement of the compaction parameters for different types of soil and the size of the shelterbelt. The effectiveness of the proposed models was evaluated according to experimental results. The influence of the rheological (elastic, viscous, and plastic) properties of soil were studied. The elasticity of tires and the running speed of forest machines can help to control the performance of forest machines. This can be done by reducing the pressure exerted on the soil and increasing the number of skidder passes 1.5-2-fold. Comparative analysis showed that the calculated data differ from the experimental ones by no more than 10%. The obtained results and the developed model will allow for a qualitative and quantitative assessment of technological impact on the soil during the projecting maps for logging operations.


Author(s):  
Igor Grigorev ◽  
Olga Kunickaya ◽  
Albert Burgonutdinov ◽  
Olga Burmistrova ◽  
Varvara Druzyanova ◽  
...  

An increasing demand for forest products incites a large number of log transportation operations, which may lead to negative consequences for the soil and the ecosystem as a whole. This paper presents a mathematical model to estimate the soil deformation and compaction processes under the influence of individual components of the skidding system, such as the forwarder, limbs, butts, and tops of tree-lengths in high latitudes, permafrost soil, and forests of the cryolithic zone. The effectiveness of the proposed model was evaluated according to experimental results. Comparative analysis showed that the calculated data differ from the experimental data by no more than 10%. The deformation of the soil by the bunch of tree-length logs occurs due to shearing processes. It has been established that the initial vertical stress exceeds the radial stress by 30–40%. The result of estimating the dependency of the shelterbelt width on the number of tree-length logs showed that the limit values for logs amount to 4–6 units for the mild, medium, and solid soil categories. The obtained results and the developed model will allow for a qualitative and quantitative assessment of the technological impact on the soil during the projecting of maps for logging operations.


2020 ◽  
Vol 12 (23) ◽  
pp. 10057
Author(s):  
Hyun Hwan Kim ◽  
Mithil Mazumder ◽  
Soon-Jae Lee ◽  
Moon-Sup Lee

In this study, thermoplastic polyurethane (TPU) and styrene-isoprene-styrene (SIS) were utilized to enhance asphalt binder properties. Superpave asphalt binder tests and multiple stress creep recovery (MSCR) were conducted to evaluate the physical and rheological performance (viscosity, rutting, and cracking properties) of the asphalt binders before and after short-term aging and after the long-term aging process. The results showed that (i) TPU has a positive effect on workability, including the mixing and compaction processes, which was evident from the reduced binder viscosity; (ii) asphalt binders with TPU and SIS showed better rutting resistance compared to the SIS binders without TPU; (iii) the cracking resistance of asphalt binders was found to be improved significantly with the addition of TPU; and (iv) TPU has the potential to be considered as a sustainable polymer modifier for producing bearable asphalt binders by improving rutting and crack resistance without increasing the melting temperature of the asphalt binders.


Sign in / Sign up

Export Citation Format

Share Document