Linear Static Response of Suspension Arm Based on Artificial Neural Network Technique

2011 ◽  
Vol 213 ◽  
pp. 419-426
Author(s):  
M.M. Rahman ◽  
Hemin M. Mohyaldeen ◽  
M.M. Noor ◽  
K. Kadirgama ◽  
Rosli A. Bakar

Modeling and simulation are indispensable when dealing with complex engineering systems. This study deals with intelligent techniques modeling for linear response of suspension arm. The finite element analysis and Radial Basis Function Neural Network (RBFNN) technique is used to predict the response of suspension arm. The linear static analysis was performed utilizing the finite element analysis code. The neural network model has 3 inputs representing the load, mesh size and material while 4 output representing the maximum displacement, maximum Principal stress, von Mises and Tresca. Finally, regression analysis between finite element results and values predicted by the neural network model was made. It can be seen that the RBFNN proposed approach was found to be highly effective with least error in identification of stress-displacement of suspension arm. Simulated results show that RBF can be very successively used for reduction of the effort and time required to predict the stress-displacement response of suspension arm as FE methods usually deal with only a single problem for each run.

2014 ◽  
Vol 622-623 ◽  
pp. 772-779 ◽  
Author(s):  
Amirreza Yaghoobi ◽  
Mohammad Bakhshi-Jooybari ◽  
Abdolhamid Gorji ◽  
Hamid Baseri

The success of sheet hydroforming process largely depends on the loading pressure path. Pressure path is one of the most important parameters in sheet hydroforming process. In this study, a combination of finite element simulation, artificial intelligence and simulated annealing optimization have been utilized to optimize the pressure path in producing cylindrical-spherical parts. In the beginning, the finite element model was verified based on laboratory experimental results. The experiments were designed and a radial basis neural network model was developed using data generated from verified finite element model to predict the thickness in the critical region of the product. Results indicated that the neural network model could be applied successfully to predict the sheet thickness in the critical region. In addition, the neural network model was used as a fitness function in simulated annealing algorithm to minimize the thickening in the above mentioned critical region. The final results showed that utilization of the optimized pressure path yields good thickness distribution of the part.


2012 ◽  
Vol 201-202 ◽  
pp. 907-911 ◽  
Author(s):  
Feng Yi Feng ◽  
Yu Guo Cui ◽  
Fei Xue ◽  
Liang En Wu

Based on the requirements of that the finger can move in parallel, and the displacement of the finger can be detected, the micro-gripper driven by piezoelectric actuator is designed based on the displacement amplification structure with the flexure hinge. The static analysis, the modal analysis, the harmonic response analysis and the transient response analysis of the micro-gripper are carried out by using the finite element analysis software ANSYS. The results of the finite element analysis show that the finger is fully able to move in parallel, and can detect the displacement of the finger; the maximum displacement of the finger is about 101 μm, the first natural frequency is about 130 Hz; the finger tip displacement under the 1 μm step input is about 20 μm, the fingertip vibration is about ±2 μm.


2011 ◽  
Vol 101-102 ◽  
pp. 212-215
Author(s):  
Liang Yao Su ◽  
Xiang Sheng Li ◽  
Xiong Fei Yin ◽  
Xiao Yan Feng ◽  
Shang Wen Ruan

The reinforcement rib design is one of the key parts in entire bottle design. This paper presents the rib performance prediction system based on the BP algorithm and the finite element analysis, which adopts the finite element analysis results as its learning samples, sets up the rib performance prediction system with BP artificial neural network. The results show that the artificial neural network plays an important role in rib performance prediction; meanwhile it can guide the bottle design in practical terms.


2011 ◽  
Vol 2-3 ◽  
pp. 861-864
Author(s):  
Ling Ling Li ◽  
Guang Pu Xu ◽  
Bing Bing Cui

The mechanism withstands 220t high temperature molten steel. In case of damage, molten steel pours. There will be major security incidents. Therefore, it is necessary to calculate carrying capacity of the mechanism. However, the part of components of the mechanism is made up of a crisscross of steel plate. This is used to withstand the bending and stretching. If we rely on traditional mechanical analysis, a large number of simplifying must be adopted, and accuracy of the calculation can be reduced. Therefore, this paper uses the COSMOSWorks Plug-in of SolidWorks software to carry out finite element calculation of whole machine for the mechanism. It avoids these shortcomings mentioned above. And this makes bearing capacity calculation to be more close to the actual circumstances. And the results show that: (1) the maximum stress of parts in the mechanism is only 52.8Mpa and much less than permissible stresses of its materials. As a result, the mechanism has sufficient bearing capacity. (2) The maximum displacement of whole machine is 2.637 mm. And the displacement will cause dip angle when lifting molten steel and it is less than its allowable stiffness. Therefore, the deformation is to meet requirements for the mechanism. In conclusion, the finite element analysis of the whole machine avoids complex force analysis and simplification of structure. The calculation has high accuracy. It is one of effective methods in the design of intensity and stiffness of complex structures.


2013 ◽  
Vol 744 ◽  
pp. 190-193
Author(s):  
Xiu Hua Ma

According to the plunger pump movement principle, this paper analyzed the two kind of typical force situation of the connecting rod, and obtained the theoretical maximum value of the force. The finite element analysis method was applied to analyze the structure strength of the connecting rod. The finite element model of the connecting rod was established, and the load handling and boundary condition was analyzed. The maximum stress 405MPa occurs at the transition from the small end to the link body. The average stress of the link body is 136MPa. The maximum displacement is 0.17mm, belongs to the small deformation range. The last results of the node stress and displacement show that the connecting rod can work safely.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Feijun Qu ◽  
Zhengyi Jiang ◽  
Haina Lu

In flexible microrolling, springback in thickness direction is a critical indicator to determine the forming quality. Accurate prediction of springback is one of the significant aspects in the finite element analysis of flexible microrolling. Meshing is a step of great importance in finite element analysis of manufacturing process as it directly determines the accuracy of the FEA results as well as the requested computational time. This paper presents a numerical study on revealing the mesh effects on the accuracy of springback estimation utilising ABAQUS/Standard for modelling and analyses. Two types of meshes with six mesh sizes for each mesh type are considered in this study and the optimal mesh type and mesh size have been found to obtain accurate value of springback while saving as much computational time as possible.


2013 ◽  
Vol 405-408 ◽  
pp. 1135-1138
Author(s):  
Chi Chen ◽  
Tian Lu ◽  
Hao Yuan Chen ◽  
Li Cheng Tian

Taking QTZ630 tower crane as the research object, this thesis will use parameter language APDL of finite element analysis software ANSYS direct modeling. Then set the basic parameters of the material, mesh, and finally conduct static analysis. Combining the actual situation, the normal operation of tower cranes in three different conditions of deformation and internal force is analyzed, the results show that three conditions of the maximum displacement and stress values to meet the design requirements specification and there is still a material balance itself.


Author(s):  
Qiu-Ping Zhou ◽  
Hua Ding

Based on the relationship between finite element (FE) solution and mesh size, a new approach based on mesh depending on the material properties is proposed to make the finite element analysis results more efficient and more close to the optimal solution. This optimal solution is often evaluated either by experiment or by finite element method (FEM). At the opposite of the accuracy obtained by sensitivities analysis of the FEM which requires time-consuming, our approach allows getting the optimal meshing based on the material properties.


Sign in / Sign up

Export Citation Format

Share Document