scholarly journals Development of an Ultra-Lightweight Thin Film Polymer Modified Concrete Material

2011 ◽  
Vol 466 ◽  
pp. 131-139 ◽  
Author(s):  
Deon Kruger ◽  
Michael van der Westhuizen

Certain construction situations call for the use of ultra-lightweight concrete materials. The properties of such materials allow for the utilisation of concrete in weight critical applications, for example precast elements, roofing panels, flooring and cladding of structures. The weight saving benefits of lightweight concrete are evident, yet a trade-off in the strength and durability characteristics of the concrete are made. This paper sets out to develop an ultra-lightweight thin filmed polymer modified concrete material for such applications. This material may incorporate specialised aggregates and admixtures to meet performance requirements but the effects of these on the performance of the lightweight concrete are to be carefully evaluated. This paper presents some of the results obtained by means of laboratory testing as well in-situ testing. As part of the in-situ testing, the paper also reports on the practical evaluation of the ultra-lightweight material characteristics performed through the construction of a light weight concrete racing canoe. This allowed for the evaluation of the material performance characteristics and the establishment of acceptable work and application methods when constructing with this material.

2004 ◽  
Vol 26 (4) ◽  
pp. 307-314 ◽  
Author(s):  
M.N Haque ◽  
H Al-Khaiat ◽  
O Kayali

2021 ◽  
Author(s):  
Ibrahim Al-Ani ◽  
◽  
Wan Hamidon ◽  
Wan Mohtar ◽  
Basma Alwachy ◽  
...  

Concrete is a major material used in the construction of buildings and structures in the world. Gravel and sand are the major ingredients of concrete but are non-renewable natural materials. Therefore, the utilisation of palm oil clinker (POC), a solid waste generated from palm oil industry is proposed to replace natural aggregate in this research to reduce the demand for natural aggregates. One mix of ordinary concrete as control concrete; while four mix proportions of oil palm clinker concrete were obtained by replacing 25 %, 50 %, 75 %, and 100 % of gravel and sand of control concrete with coarse and fine oil palm clinker respectively by volume, with same cement content and water cement ratio. Compressive strength test was carried out of concretes with different percentages of oil palm clinker; whereas water absorption test according to respective standard, were carried out to determine the durability properties of various mixes. Based on the results obtained, the study on the effect of percentage of clinker on strength and durability properties was drawn. According to ACI classification of light weight concrete only the 100 percentage replacement can achieve the definition of light weight concrete since its density less than 1900 kg/m3 and strength larger than 17 MPa. Eventually the 25 % replacement of the normal aggregate by the OPC will improve the strength and durability of the concrete.


2019 ◽  
pp. 255-301
Author(s):  
Jonathan Knappett ◽  
R. F. Craig
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document