Numerical Simulation of Tire Steady-State Temperature Field Based on ANSYS Workbench

2012 ◽  
Vol 501 ◽  
pp. 382-387
Author(s):  
Jing Li ◽  
Ze Peng Wang ◽  
Wen Xiu Liu ◽  
Fa Hu Zhang

The three-dimensional axial symmetry FEA (finite-element analysis) model is established for 165/70R13 type tire based on ANSYS Workbench FEA software, and numerical simulation at temperature field is implemented, which reflects the temperature distribution at each part of tire intuitively, and has a certain guiding significance of improving tire structure and design.

2009 ◽  
Vol 87-88 ◽  
pp. 518-523 ◽  
Author(s):  
Jing Li ◽  
Yan He ◽  
Zhen Chao Chen

Based on the Adina finite element analysis software, 3D axisymmetric finite element analysis model of the 205/75R15 PCR tire was established, the steady temperature field of rolling tire was simulated, and the thermal distribution colored cloud diagram of steady-state temperature field of 3D rolling tire which directly shows the temperature distribution of each section of tire was analyzed to offer certain guidance to the improvement of tire structure and rubber formula.


2012 ◽  
Vol 166-169 ◽  
pp. 1141-1144
Author(s):  
Hai Tao Wan ◽  
Li Min Zhao

Gravity anchor is one of essential forced components of steady suspension bridge. The paper takes the example of the finite element numerical simulation of steady suspension bridge gravity anchor, main contents include: First, performance parameters of concrete and hydration heat of cement is collected, the one-fourth block of anchor model is established by large-scale general finite element software ANSYS. The process of establishing finite element analysis model includes the input of the model parameters, the boundary conditions set of finite element model, and the mesh of finite element analysis model. Then, the numerical simulation computation to temperature field of gravity anchor is carried by finite element software ANSYS. Finally, from the temperature field distribution curves, studying the temperature distribution rule of concrete pouring and drawing some conclusions.


2012 ◽  
Vol 24 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Yu-Chi Chen ◽  
Wen-Ching Ko ◽  
Han-Lung Chen ◽  
Hsu-Ching Liao ◽  
Wen-Jong Wu ◽  
...  

We propose a model to give us a method to investigate the characteristic three-dimensional directivity in an arbitrarily configured flexible electret-based loudspeaker. In recent years, novel electret loudspeakers have attracted much interest due to their being lightweight, paper thin, and possessing excellent mid- to high-frequency responses. Increasing or decreasing the directivity of an electret loudspeaker makes it excellent for adoption to many applications, especially for directing sound to a particular area or specific audio location. Herein, we detail a novel electret loudspeaker that possesses various directivities and is based on various structures of spacers instead of having to use multichannel amplifiers and a complicated digital control system. In order to study the directivity of an electret loudspeaker based on an array structure which can be adopted for various applications, the horizontal and vertical polar directivity characteristics as a function of frequency were simulated by a finite-element analysis model. To validate the finite-element analysis model, the beam pattern of the electret loudspeaker was measured in an anechoic room. Both the simulated and experimental results are detailed in this article to validate the various assertions related to the directivity of electret cell-based smart speakers.


2020 ◽  
Vol 12 (12) ◽  
pp. 168781402097774
Author(s):  
Jiawei Wang ◽  
Fachao Li ◽  
Zibo Chen ◽  
Baishu Li ◽  
Jue Zhu

This paper studies the force and deformation of the connecting channel in Ningbo rail transit construction, which firstly used the mechanical shield method. Steel-concrete composite structural segments are used in the T-joint of connecting channel. The cutting part of the segments are replaced by the concrete and fiberglass instead of reinforced concrete. Basing on a variety of three-dimensional design software and ABAQUS finite element analysis software, a refined finite element analysis model of the special segments is established. By considering the influence of curved joint bolts, the force analysis of the special segments under the structural state before and after construction is performed. According to the analysis and comparison of the deformation of the segments with and without the bolts, it is concluded that the steel-concrete segments can withstand the pressure of the soil before and after the construction. Suggestions for the safety of the design and construction of the segments are put forward.


2013 ◽  
Vol 859 ◽  
pp. 143-148
Author(s):  
Yang Xu ◽  
Ding Ling Li ◽  
Li Peng ◽  
Yan Xiao ◽  
Yi Hua Nie

The finite element analysis model was built as the real scale for mortar arch framework slope protection, and the displacement and strain at different points were collected by vertical loading pressure. So the mechanical mechanism can be studied, and the analysis was done between calculation results and testing results of solid miniature model. The studying results show that the point on the arch foot is the worst stress place for each arch, and the total displacement increase nonlinear as the distance from the slope top increases, and the bump phenomenon exists in the bottom of slope, the points are likely to be broken.


Sign in / Sign up

Export Citation Format

Share Document