steady temperature field
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Joshua Finneran ◽  
Colin P. Garner ◽  
François Nadal

In this article, we show that significant deviations from the classical quasi-steady models of droplet evaporation can arise solely due to transient effects in the gas phase. The problem of fully transient evaporation of a single droplet in an infinite atmosphere is solved in a generalized, dimensionless framework with explicitly stated assumptions. The differences between the classical quasi-steady and fully transient models are quantified for a wide range of the 10-dimensional input domain and a robust predictive tool to rapidly quantify this difference is reported. In extreme cases, the classical quasi-steady model can overpredict the droplet lifetime by 80%. This overprediction increases when the energy required to bring the droplet into equilibrium with its environment becomes small compared with the energy required to cool the space around the droplet and therefore establish the quasi-steady temperature field. In the general case, it is shown that two transient regimes emerge when a droplet is suddenly immersed into an atmosphere. Initially, the droplet vaporizes faster than classical models predict since the surrounding gas takes time to cool and to saturate with vapour. Towards the end of its life, the droplet vaporizes slower than expected since the region of cold vapour established in the early stages of evaporation remains and insulates the droplet.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 787 ◽  
Author(s):  
Li-Na Cao ◽  
Guofeng Yao

A differential equation of panel vibration in supersonic flow is established on the basis of the thin-plate large deflection theory under the assumption of a quasi-steady temperature field. The equation is dimensionless, and the derivation of its second-order Galerkin discretization yields a four-dimensional system. The algebraic criterion of the Hopf bifurcation is applied to study the motion stability of heated panels in supersonic flow. We provide a supplementary explanation for the proof process of a theorem, and analytical expressions of flutter dynamic pressure and panel vibration frequencies are derived. The conclusion is that the algebraic criterion of Hopf bifurcation can be applied in high-dimensional problems with many parameters. Moreover, the computational intensity of the method established in this work is less than that of conventional eigenvalue computation methods using parameter variation.


Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 803
Author(s):  
Antonov ◽  
Volkov ◽  
Strizhak

Mathematical modeling of the heat and mass transfer processes in the evaporating droplet–high-temperature gas medium system is difficult due to the need to describe the dynamics of the formation of the quasi-steady temperature field of evaporating droplets, as well as of a gas-vapor buffer layer around them and in their trace during evaporation in high-temperature gas flows. We used planar laser-induced fluorescence (PLIF) and laser-induced phosphorescence (LIP). The experiments were conducted with water droplets (initial radius 1–2 mm) heated in a hot air flow (temperature 20–500 °С, velocity 0.5–6 m/s). Unsteady temperature fields of water droplets and the gas-vapor mixture around them were recorded. High inhomogeneity of temperature fields under study has been validated. To determine the temperature in the so called dead zones, we solved the problem of heat transfer, in which the temperature in boundary conditions was set on the basis of experimental values.


2019 ◽  
Vol 128 ◽  
pp. 01025
Author(s):  
Dawid Taler ◽  
Piotr Dzierwa ◽  
Jan Taler

A new approximate method of optimum heating cylindrical pressure elements weakened by openings was proposed. Optimum variations in fluid temperature when heating the pressure component were determined from the condition that the total circumferential stress at the edge of the opening, resulting from the thermal load and pressure is equal to the allowable stress. The allowable stress is determined from the Wöhler fatigue diagram for a given number of start-ups and shutdowns of a power unit from the cold state. Optimum temperature changes are difficult to estimate at the beginning of the heating, usingboth exact analytical and numerical methods. In case of analytical methods, this is due to the very slow convergence of a series for near-zero time in the exact solution. In this paper, the optimum temperature changes of the fluid at the beginning of heating were determined using the heat balance integralmethod (HBIM). This method makes it possible to determine with high accuracy the temperature of the fluid for times close to zero, i.e., at the beginning of the heating process. In the second stage of heating, the optimum fluid temperature was determined on the assumption of a quasi-steady temperature field in the pressure element.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1441-1445
Author(s):  
Chun Fang Xue

This article introduces a semi-analytical numerical method ——method of lines(MOLs) to solve steady temperature field of Laser Engineered Net shaping (LENS). The main idea of MOLs is to semi-discretized the governing equation of thermal transfer problem into a system of ordinary differential equations (ODEs) defined on discrete lines by means of the finite difference method. The steady linear temperature fields of functionally graded materials were obtained using MOLs and the regularities of different temperature functions were also found. The effects of thermal conductivity coefficient under different formal functions on thermal temperature fields were analys. Numerical results showed that different material thermal conductivity function had obvious different effect on the temperature field.


2014 ◽  
Vol 63 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Guang-Hou Zhou ◽  
Li Han ◽  
Zhen-Nan Fan ◽  
Yong Liao ◽  
Song Huang

Abstract To study the principle of loss and heat at the end region of large 4-poles nuclear power turbine generator, 3D transient electromagnetic field and 3D steady temperature field finite element (FE) models of the end region are established respectively. Considering the factors such as rotor motion, core non-linearity and time-varying of electromagnetic field, the anisotropic heat conductivity and different heat dissipation conditions of stator end region, a 50 Hz, 1150 MW, 4-poles nuclear power turbine generator is investigated. The loss and heat at the generator end region are calculated respectively at no-load and rated-load, and the calculation results are compared with the test data. The result shows that the calculation model is accurate and the generator design is suitable. The method is valuable for the research of loss and heat at the end region of large 4-poles nuclear power turbine generator and the improvement of the generator’s operation stability. The method has been applied successfully for the design of the larger nuclear power turbine generators


Sign in / Sign up

Export Citation Format

Share Document