Multi-Scale Modeling of Microstructure Evolution Induced Anisotropy in Metals

2013 ◽  
Vol 554-557 ◽  
pp. 2388-2399 ◽  
Author(s):  
Tuncay Yalcinkaya

This paper presents two crystal plasticity based computational constitutive models for the intrinsic formation of plastic microstructure during monotonic loading and its altered evolution under strain path changes in metal forming operations. The formation step is modeled via a non-convex strain gradient crystal plasticity framework which could simulate the intrinsic development of the plastic microstructures. The evolution under strain path changes is modeled via phenomenologically based constitutive equations incorporated into crystal plasticity framework. The latter is capable of simulating the transient anisotropy effects (e.g. cross hardening, Bauschinger effect) depending on the change in the strain path. The paper discusses the unification of such models for the continuous modeling of microstructure formation and evolution processes.

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 564 ◽  
Author(s):  
Olha Kauss ◽  
Susanne Obert ◽  
Iurii Bogomol ◽  
Thomas Wablat ◽  
Nils Siemensmeyer ◽  
...  

Mo-Si-B alloys are one of the most promising candidates to substitute Ni based superalloys in gas turbines. The optimization of their composition can be achieved more effectively using multi-scale modeling of materials behavior and structural analysis of components for understanding, predicting, and screening properties of new alloys. Nevertheless, this approach is dependent on data on the properties of the single phases in these alloys. The focus of this investigation is Mo3Si, one of the phases in typical Mo-Si-B alloys. The effect of 100 h annealing at 1600 °C on phase stability and microhardness of its three near-stoichiometric compositions—Mo-23Si, Mo-24Si and Mo-25Si (at %)—is reported. While Mo-23Si specimen consist only of Mo3Si before and after annealing, Mo-24Si and Mo-25Si comprise Mo5Si3 and Mo3Si before annealing. The latter is then increased by the annealing. No significant difference in microhardness was detected between the different compositions as well as after annealing. The creep properties of Mo3Si are described at 1093 °C and 1300 °C at varying stress levels as well as at 300 MPa and temperatures between 1050 °C and 1350 °C. Three constitutive models were used for regression of experimental results—(i) power law with a constant creep exponent, (ii) stress range dependent law, and (iii) power law with a temperature-dependent creep exponent. It is confirmed that Mo3Si has a higher creep resistance than Moss and multi-phase Mo-Si-B alloys, but a lower creep strength as compared to Mo5SiB2.


2008 ◽  
Vol 24 (8) ◽  
pp. 1360-1379 ◽  
Author(s):  
Bjørn Holmedal ◽  
Paul Van Houtte ◽  
Yuguo An

Sign in / Sign up

Export Citation Format

Share Document