A Two-Pronged Approach for the Assessment of Springback Variability for Sheet Metal Forming Applications

2013 ◽  
Vol 554-557 ◽  
pp. 957-965 ◽  
Author(s):  
Jérémy Lebon ◽  
Guénhaël Le Quilliec ◽  
Rajan Filomeno Coelho ◽  
Piotr Breitkopf ◽  
Pierre Villon

Springback assessment for sheet metal forming processes is a challenging issue which requires to take into account complex phenomena (physical non linearities and uncertainties). We highlight that the stochastic analysis of metal forming process requires both a high precision and low cost numerical models and propose a two-pronged methodology to address these challenges. The deep drawing simulation process is performed using an original low cost semi-analytical approach based on a bending under tension model with a good accuracy for small random perturbations of the physical and process parameters. The springback variability analysis is performed using an efficient stochastic metamodel, namely a sparse version of the polynomial chaos expansion.

Procedia CIRP ◽  
2014 ◽  
Vol 18 ◽  
pp. 203-208 ◽  
Author(s):  
J. Enz ◽  
S. Riekehr ◽  
V. Ventzke ◽  
N. Sotirov ◽  
N. Kashaev

Author(s):  
Jasri Mohamad

To improve sheet metal forming process simulation using finite element method, there is a need to incorporate an appropriate constitutive equation capable of describing the Bauschinger effect and the so-called cyclic transient, derived from a near to actual sheet metal forming process testing tool. A cyclic loading tool has been developed to test and record the characteristics of sheet metal deformation by investigating the Bauschinger effect factors (BEF) and cyclic hardening behaviour. Experimental investigation conducted on low carbon steel and stainless steel demonstrates that the tool is able to record sheet metal behaviour under cyclic loading. The results are analysed for signs of the Bauschinger effect and cyclic hardening effect. It was found that the Bauschinger effect does occur during bending and unbending loadings in sheet metal forming process.


Sign in / Sign up

Export Citation Format

Share Document