Interaction of High Frequency Lamb Waves with Surface-Mount Sensor Adhesives

2013 ◽  
Vol 558 ◽  
pp. 489-500 ◽  
Author(s):  
Patrick Norman ◽  
Claire Davis ◽  
Cédric Rosalie ◽  
Nik Rajic

The application of Lamb waves to damage and/or defect detection in structures is typicallyconfined to lower frequencies in regimes where only the lower order modes propagate in order to simplifyinterpretation of the scattered wave-fields. Operation at higher frequencies offers the potentialto extend the sensitivity and diagnostic capability of this technique, however there are technical challengesassociated with the measurement and interpretation of this data. Recent work by the authorshas demonstrated the ability of fibre Bragg gratings (FBGs) to measure wave-fields at frequencies inexcess of 2 MHz [1]. However, when this work was extended to other thinner plate specimens it wasfound that at these higher frequencies, the cyanoacrylate adhesive (M-Bond 200) used to attach theFBG sensors to the plate was significantly affecting the propagation of the waves. Laser vibrometrywas used to characterise the wave-field in the region surrounding the adhesive and it was found that theself-adhesive retro-reflective tape applied to aid with this measurement was also affecting the wavefieldin the higher frequency regime. This paper reports on an experimental study into the influence ofboth of these materials on the propagating wave-field. Three different lengths of retro-reflective tapewere placed in the path of Lamb waves propagating in an aluminium plate and laser vibrometry wasused to measure the wave-field upstream and downstream of the tape for a range of different excitationfrequencies. The same experiment was conducted using small footprint cyanoacrylate film samplesof different thickness. The results show that both of these surface-mount materials attenuate, diffractand scatter the incoming waves as well as introducing a phase lag. The degree of influence of thesurface layer appears to be a function of its material properties, the frequency of the incoming waveand the thickness and footprint of the surface layer relative to the base material thickness. Althoughfurther work is required to characterise the relative influence of each of these variables, investigationsto date show that for the measurement of Lamb Waves on thin structures, careful considerationshould be given to the thickness and footprint of the adhesive layer and sensor, particularly in the highfrequency regime, so as to minimise their effect on the measurement.

2010 ◽  
Vol 9 (3) ◽  
pp. 247-256 ◽  
Author(s):  
Sungwon Ha ◽  
Kuldeep Lonkar ◽  
Amrita Mittal ◽  
Fu-Kuo Chang

1997 ◽  
Vol 64 (1) ◽  
pp. 50-58 ◽  
Author(s):  
Ruichong Zhang ◽  
Liyang Zhang ◽  
Masanobu Shinozuka

Seismic waves in a layered half-space with lateral inhomogeneities, generated by a buried seismic dislocation source, are investigated in these two consecutive papers. In the first paper, the problem is formulated and a corresponding approach to solve the problem is provided. Specifically, the elastic parameters in the laterally inhomogeneous layer, such as P and S wave speeds and density, are separated by the mean and the deviation parts. The mean part is constant while the deviation part, which is much smaller compared to the mean part, is a function of lateral coordinates. Using the first-order perturbation approach, it is shown that the total wave field may be obtained as a superposition of the mean wave field and the scattered wave field. The mean wave field is obtainable as a response solution for a perfectly layered half-space (without lateral inhomogeneities) subjected to a buried seismic dislocation source. The scattered wave field is obtained as a response solution for the same layered half-space as used in the mean wave field, but is subjected to the equivalent fictitious distributed body forces that mathematically replace the lateral inhomogeneities. These fictitious body forces have the same effects as the existence of lateral inhomogeneities and can be evaluated as a function of the inhomogeneity parameters and the mean wave fleld. The explicit expressions for the responses in both the mean and the scattered wave fields are derived with the aid of the integral transform approach and wave propagation analysis.


Author(s):  
Bernard Molin ◽  
Jean-Baptiste Lacaze

The horizontal wave drift force acting on a vertical floating column, without then with a heave plate, is considered. Computations are performed with a diffraction-radiation code and through the Morison and Rainey equations. Focus is on wave frequencies around the heave resonance where the drift force may be significant, even though the scattered wave-field being weak. It is found that the Morison equation overpredicts the drift force while Rainey equations perform rather well.


Geophysics ◽  
1984 ◽  
Vol 49 (2) ◽  
pp. 124-131 ◽  
Author(s):  
Jeno Gazdag ◽  
Piero Sguazzero

Under the horizontally layered velocity assumption, migration is defined by a set of independent ordinary differential equations in the wavenumber‐frequency domain. The wave components are extrapolated downward by rotating their phases. This paper shows that one can generalize the concepts of the phase‐shift method to media having lateral velocity variations. The wave extrapolation procedure consists of two steps. In the first step, the wave field is extrapolated by the phase‐shift method using ℓ laterally uniform velocity fields. The intermediate result is ℓ reference wave fields. In the second step, the actual wave field is computed by interpolation from the reference wave fields. The phase shift plus interpolation (PSPI) method is unconditionally stable and lends itself conveniently to migration of three‐dimensional data. The performance of the methods is demonstrated on synthetic examples. The PSPI migration results are then compared with those obtained from a finite‐difference method.


1985 ◽  
Author(s):  
B. Gelchinsky ◽  
V. Shtivelman ◽  
E. Landa

1971 ◽  
Vol 49 (1) ◽  
pp. 113-131 ◽  
Author(s):  
P. G. Baines

This paper considers the linear inviscid reflexion of internal/inertial waves from smooth bumpy surfaces where a characteristic (or ray) is tangent to the surface at some point. There are two principal cases. When a characteristic associated with the incident wave is tangent to the surface we have diffraction; when the tangential characteristic is associated with a reflected wave we have split reflexion, a phenomenon which has no counterpart in classical non-dispersive wave theory. In both these cases the problem of determining the wave field may be reduced to a set of coupled integral equations with two unknown functions. These equations are solved for the simplest topography for each case, and the properties of the wave fields for more general topographies are discussed. For both split reflexion and diffraction, the fluid velocity has an inverse-square-root singularity on the tangential characteristic, and the energy density has a corresponding logarithmic singularity. The diffracted wave field penetrates into the shadow region a distance which is of the order of the incident wavelength. Possibilities for instability and mixing are discussed.


2013 ◽  
Vol 80 (6) ◽  
Author(s):  
Boyang Ding ◽  
Alexander H.-D. Cheng ◽  
Zhanglong Chen

Fundamental solutions of poroelastodynamics in the frequency domain have been derived by Cheng et al. (1991, “Integral Equation for Dynamic Poroelasticity in Frequency Domain With BEM Solution,” J. Eng. Mech., 117(5), pp. 1136–1157) for the point force and fluid source singularities in 2D and 3D, using an analogy between poroelasticity and thermoelasticity. In this paper, a formal derivation is presented based on the decomposition of a Dirac δ function into a rotational and a dilatational part. The decomposition allows the derived fundamental solutions to be separated into a shear and two compressional wave components, before they are combined. For the point force solution, each of the isolated wave components contains a term that is not present in the combined wave field; hence can be observable only if the present approach is taken. These isolated wave fields may be useful in applications where it is desirable to separate the shear and compressional wave effects. These wave fields are evaluated and plotted.


Sign in / Sign up

Export Citation Format

Share Document