horizontal wave
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 49)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Vol 33 (6) ◽  
pp. 321-332
Author(s):  
Jong-In Lee ◽  
Geum Yong Lee ◽  
Young-Taek Kim

The crown wall with parapet on top of the rubble mound breakwater represents a relatively economic and efficient solution to reduce the wave overtopping discharge. However, the inclusion of parapet leads to increased wave pressure on the crown wall. The wave pressure on the crown wall is investigated by physical model test. To design the crown wall the wave loads should be available, and the horizontal wave pressure is still unclear. Regarding to the horizontal wave pressure on the crown wall, a series of experiments were conducted by changing the rubble mound type structure and the wave conditions. Based on these results, pressure modification factors of Goda’s (1974, 2010) formula have been suggested, which can be applicable for the practical design of the crown wall of the rubble-mound breakwater covered by tetrapods.


Author(s):  
Chandani Kumari ◽  
Santimoy Kundu ◽  
Manisha Maity ◽  
Shishir Gupta

The present study is devoted to investigate the traversal of shear horizontal wave (SH-waves) in an initial-stressed fluid saturated porous stratum bounded between an initial-stressed magneto-elastic upper stratum and an initial-stressed elastic substrate. We have obtained the exact solution of the governing equations and explained in detail for various effective parameters. The displacement relation is developed with the help of Maxwell’s fundamental equations and Maxwell’s tensor. The impact of diverse parameters such as initial stress, porosity, magneto-elasticity, thickness ratio of attenuation coefficient and phase velocity of SH-wave has been discussed extensively by means of graphical depictions. Results indicate that such parameters possess a great positive impact on attenuation coefficient. This model contains a huge potential to deal with many commercial and industrial applications in Geo-technical, earthquake engineering and Geophysics.


2021 ◽  
Author(s):  
Peihong Zhao ◽  
Dapeng Sun ◽  
Hao Wu

A Jarlan-type perforated caisson (JTPC) was an important form of structure in offshore and coastal engineering and its wave attenuation performance was greatly affected by μ (the perforated rate). In the present research, a numerical model based on VARANS equations was tested by comparing the simulation results with physical experiments and then adopted to study the effect of a larger range of μ on wave attenuation performance which included both the horizontal wave forces and the reflection coefficients. Conclusions were drawn that the total horizontal wave force and the reflection coefficient both tended to decrease and then increase with increasing μ; when the reflection coefficient reached its minimum value as about μ=0.2, the wave force at the seaward side of the perforated front wall tended to be equal to that at the solid rear wall; the total horizontal wave force reached its minimum value as about μ=0.3.


2021 ◽  
Vol 237 ◽  
pp. 109480
Author(s):  
Yu Cao ◽  
Andong Liu ◽  
Xiaochuan Yu ◽  
Ziyan Liu ◽  
Xiaobo Tang ◽  
...  

2021 ◽  
pp. 027836492110377
Author(s):  
Baxi Chong ◽  
Tianyu Wang ◽  
Jennifer M. Rieser ◽  
Bo Lin ◽  
Abdul Kaba ◽  
...  

Sidewinding is a form of locomotion executed by certain snakes and has been reconstructed in limbless robots; the gait is beneficial because it is effective in diverse terrestrial environments. Sidewinding gaits are generated by coordination of horizontal and vertical traveling waves of body undulation: the horizontal wave largely sets the direction of sidewinding with respect to the body frame while the vertical traveling wave largely determines the contact pattern between the body and the environment. When the locomotor’s center of mass leaves the supporting polygon formed by the contact pattern, undesirable locomotor behaviors (such as unwanted turning or unstable oscillation of the body) can occur. In this article, we develop an approach to generate desired translation and turning by modulating the vertical wave. These modulations alter the distribution of body–environment contact patches and can stabilize configurations that were previously statically unstable. The approach first identifies the spatial frequency of the vertical wave that statically stabilizes the locomotor for a given horizontal wave. Then, using geometric mechanics tools, we design the coordination between body waves that produces the desired translation or rotation. We demonstrate the effectiveness of our technique in numerical simulations and on experiments with a 16-joint limbless robot locomoting on flat hard ground. Our scheme broadens the range of movements and behaviors accessible to sidewinding locomotors at low speeds, which can lead to limbless systems capable of traversing diverse terrain stably and/or rapidly.


Sign in / Sign up

Export Citation Format

Share Document