Research on Statistical Parameters of 3-D Roughness for Micro Wire Electric Discharge Machining Surface

2013 ◽  
Vol 572 ◽  
pp. 287-290
Author(s):  
Li Bin Guo ◽  
Hai Cui ◽  
Bin Zhang ◽  
Zhi Hang Zhang

Amplitude parameters and functional parameters of three-dimensionalroughness are established by statistics geometry. Since micro wire electric discharge machining (MWEDM) surface approximately follows the Gauss distribution, its statistical characteristics are different from cutting processing surface. Characterization meaning between MWEDM surface and cutting processing surface is rather different. This study begins with shape parameters’ mathematics essence of surface height distribution of three-dimensionalroughness, analyzes their definite characterization meanings for MWEDM surface, deeply researches bearing ratio curve of MWEDM surface, reasonably ascertains its functional areas and finally establishes nine functional parameters where volume parameter is the main one.

2021 ◽  
Vol 1026 ◽  
pp. 28-38
Author(s):  
I. Vishal Manoj ◽  
S. Narendranath ◽  
Alokesh Pramanik

Wire electric discharge machining non-contact machining process based on spark erosion technique. It can machine difficult-to-cut materials with excellent precision. In this paper Alloy-X, a nickel-based superalloy was machined at different machining parameters. Input parameters like pulse on time, pulse off time, servo voltage and wire feed were employed for the machining. Response parameters like cutting speed and surface roughness were analyzed from the L25 orthogonal experiments. It was noted that the pulse on time and servo voltage were the most influential parameters. Both cutting speed and surface roughness increased on increase in pulse on time and decrease in servo voltage. Grey relation analysis was performed to get the optimal parametric setting. Response surface method and artificial neural network predictors were used in the prediction of cutting speed and surface roughness. It was found that among the two predictors artificial neural network was accurate than response surface method.


2014 ◽  
Vol 778-780 ◽  
pp. 776-779 ◽  
Author(s):  
Masumi Ogawa ◽  
Kei Mine ◽  
Seiki Fuchiyama ◽  
Yasuhiro Tawa ◽  
Tomohisa Kato

In order to slice the larger size ingot toward 6 inch of silicon carbide (SiC), we are developing Multi-wire Electric Discharge Machining (EDM). To prevent wire break during slicing, we have developed the electric discharge pulse control system. So far, with 10 multi-wires, we have succeeded in slicing of 4 inch SiC balk single crystal without wire break. High quality slicing surface (e.g. small value of around 10 μm of SORI for 3 inchi wafer) was also achieved. By polishing methode, EDM-sliced wafer was estimated to have the uniform thickness of damaged layer over the entire surface. We confirmed that the wafer sliced by EDM can be processed in the later process, by grinding the 3 inch wafer. And it was confirmed that 6 inch ingot can be sliced with 10 multi-wire EDM, by slicing the boule of SiC poly crystal. For the larger diameter ingot than 4 inch, Multi-wire EDM will be practically used by the effective removal of machining chips from the machining clearance between the wire and work.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3830
Author(s):  
Tomasz Bartkowiak ◽  
Michał Mendak ◽  
Krzysztof Mrozek ◽  
Michał Wieczorowski

The objective of this work is to study the geometric properties of surface topographies of hot-work tool steel created by electric discharge machining (EDM) using motif and multiscale analysis. The richness of these analyses is tested through calculating the strengths of the correlations between discharge energies and resulting surface characterization parameters, focusing on the most representative surface features—craters, and how they change with scale. Surfaces were created by EDM using estimated energies from 150 to 9468 µJ and measured by focus variation microscope. The measured topographies consist of overlapping microcraters, of which the geometry was characterized using three different analysis: conventional with ISO parameters, and motif and multiscale curvature tensor analysis. Motif analysis uses watershed segmentation which allows extraction and geometrically characterization of each crater. Curvature tensor analysis focuses on the characterization of principal curvatures and their function and their evolution with scale. Strong correlations (R2 > 0.9) were observed between craters height, diameter, area and curvature using linear and logarithmic regressions. Conventional areal parameter related to heights dispersion were found to correlate stronger using logarithmic regression. Geometric characterization of process-specific topographic formations is considered to be a natural and intuitive way of analyzing the complexity of studied surfaces. The presented approach allows extraction of information directly relating to the shape and size of topographic features of interest. In the tested conditions, the surface finish is mostly affected and potentially controlled by discharge energy at larger scales which is associated with sizes of fabricated craters.


Sign in / Sign up

Export Citation Format

Share Document