Influence of a Porous Insert on the Fluid Flow inside the Gasifier Shaft

2016 ◽  
Vol 685 ◽  
pp. 235-239 ◽  
Author(s):  
Pavel V. Openyshev ◽  
Mikhail A. Sheremet

Turbulent fluid flow inside the vertical gasifier shaft having the porous insert has been numerically analyzed. The effect of the porous medium structure on the fluid flow has been studied. The mathematical model has been formulated in dimensional primitive variables using the realizable k-ε turbulent model. The distributions of velocity and skin friction coefficient inside the gasifier shaft have been obtained. The results clearly show an essential effect of the porous medium structure on turbulent fluid flow.

1967 ◽  
Vol 23 (4) ◽  
pp. 1042-1047 ◽  
Author(s):  
M. Kh. Ibragimov ◽  
I. A. Isupov ◽  
L. L. Kobzar' ◽  
V. I. Subbotin

Author(s):  
M. Benaouicha ◽  
S. Guillou ◽  
A. Santa Cruz ◽  
H. Trigui

The study deals with a 3D Fluid-Structure Interaction (FSI) numerical model of a rectangular cantilevered flexible hydrofoil subjected to a turbulent fluid flow regime. The structural response and dynamic deformations are studied by analyzing the oscillations frequencies and amplitudes, under a hydrodynamics loads. The obtained numerical results are confronted with experimental ones, for validation. The numerical model is performed in the same geometric, physical and material conditions as the experimental set-up carried out in a hydrodynamic tunnel. A polyacetal (POM) flexible hydrofoil NACA0015 with an angle of attack of 8° is considered to be immersed in a fluid flow at a Reynold number of 3 × 105. The structure is initially at rest and then moved by the action of the fluid flow. The numerical model is based on a strong coupling procedure for solving the Fluid-Structure Interaction problem. The Arbitrary Lagrangian-Eulerian (ALE) formulation of the Navier-Stokes equations is used and an anisotropic diffusion equation is solved to compute the fluid mesh velocity and position at each time step. The finite volume method is used for the numerical resolution of the fluid dynamics equations. The structure deformations are described by the linear elasticity equation which is solved by the finite elements method. The Fluid-Structure coupled problem is solved by using the partitioned FSI implicit algorithm. A good agreement between numerical and experimental results for the hydrodynamics coefficients and hydrofoil deformations, maximum deflection and frequencies is obtained. The added mass and damping are analyzed and then the FSI effect on the dynamic deformations of the structure is highlighted.


Sign in / Sign up

Export Citation Format

Share Document