porous insert
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 8)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Vol 2094 (4) ◽  
pp. 042081
Author(s):  
N A Brykov ◽  
V Yu Kaun ◽  
A A Yatsenko

Abstract The ability to change the magnitude and direction of the thrust vector is a fundamental parameter of the propulsion systems of aircraft. A wide range of methods for controlling these quantities has been developed, which are used depending on the design schemes. The article discusses the organization of the gas-dynamic method of thrust vector control, carried out using distributed gas injection through a porous insert.


2021 ◽  
Vol 926 ◽  
Author(s):  
C. Teruna ◽  
F. Avallone ◽  
D. Ragni ◽  
A. Rubio-Carpio ◽  
D. Casalino

Lattice Boltzmann simulations were carried out to investigate the noise mitigation mechanisms of a 3-D printed porous trailing-edge insert, elucidating the link between noise reduction and material permeability. The porous insert is based on a unit cell resembling a lattice of diamond atoms. It replaces the last 20 % chord of a NACA 0018 at zero angle-of-attack. A partially blocked insert is considered by adding a solid partition between 84 % and 96 % of the aerofoil chord. The regular porous insert achieves a substantial noise reduction at low frequencies, although a slight noise increase is found at high frequencies. The partially blocked porous insert exhibits a lower noise reduction level, but the noise emission at mid-to-high frequency is slightly affected. The segment of the porous insert near the tip plays a dominant role in promoting noise mitigation, whereas the solid-porous junction contributes, in addition to the rough surface, towards the high-frequency excess noise. The current study demonstrates the existence of an entrance length associated with the porous material geometry, which is linked to the pressure release process that is responsible for promoting noise mitigation. This process is characterised by the aerodynamic interaction between pressure fluctuations across the porous medium, which is found at locations where the porous insert thickness is less than twice the entrance length. Present results also suggest that the noise attenuation level is related to both the chordwise extent of the porous insert and the streamwise turbulent length scale. The porous inserts also cause a slight drag increase compared to their solid counterpart.


2021 ◽  
Author(s):  
Christopher Teruna ◽  
Francesco Avallone ◽  
Daniele Ragni ◽  
Damiano Casalino ◽  
Alejandro Rubio Carpio

2019 ◽  
Vol 867 ◽  
pp. 611-632 ◽  
Author(s):  
Anatoly A. Maslov ◽  
S. G. Mironov ◽  
T. V. Poplavskaya ◽  
S. V. Kirilovskiy

Results of experimental and numerical investigations of a supersonic flow around a cylinder with a frontal gas-permeable insert made of a high-porosity cellular material are presented. The measurements are performed in a T-327 supersonic blowdown wind tunnel at the free-stream Mach numbers $M_{\infty }=4.85$, 7 and 21 in the range of the unit Reynolds numbers $Re_{1\infty }=(0.6{-}13.5)\times 10^{6}~\text{m}^{-1}$. The drag coefficients for a cylinder with an aerospike and a cylinder with a frontal gas-permeable porous insert are obtained. For the cylinder with the frontal gas-permeable porous insert, variations of the insert length, cylinder diameter and pore size are considered, and the mechanism of drag reduction is found, which includes two supplementary processes: attenuation of the bow shock wave in a system of weaker shock waves, and formation of an effective pointed body. The experiments are accompanied by numerical simulations of the flow around the cylinder with the frontal high-porosity insert: the fields of parameters of the external flow and the flow inside the porous insert are obtained, the drag coefficients are calculated, and the shape of the effective body for the examined model is found. The structure of the high-porosity material is modelled by a system of staggered rings of different diameters aligned in the radial and longitudinal directions (skeleton model of a porous medium). Numerical simulations of the problem are performed by means of solving two-dimensional Reynolds-averaged Navier–Stokes equations written in an axisymmetric form. The experimental and numerical data reveal significant drag reduction in a wide range of supersonic flow conditions. The results obtained on the drag coefficient for the cylinder are generalized with the use of a parameter which includes the ratio of the cylinder diameter to the pore diameter in the insert and the Mach number. This parameter is proposed as a similarity criterion for the problem of a supersonic flow around a cylinder with a frontal high-porosity insert.


Sign in / Sign up

Export Citation Format

Share Document