Plate Stability Verifications of Aluminium Plate Girders

2016 ◽  
Vol 710 ◽  
pp. 363-368
Author(s):  
László Gergely Vigh ◽  
Dib Abdelkarim

The paper focuses on overall and local web plate buckling of longitudinally multi-stiffened aluminium plate girders subjected to compression, bending, shear and transverse loading. The authors completed wide-range bifurcation stability analysis by energy method. Based on the results of the completed parametric study, buckling coefficients are formulated, taking also into account the possible interaction of local and overall buckling. Modifications are proposed for the standard Eurocode calculations of critical loads. Modification in resistance calculation for web crippling is also proposed to take the beneficial effect of curved flange-to-web connection into account. Numerical model is developed for nonlinear static analysis. Virtual experimenting – considering actual material behaviour and imperfections – is invoked for the calibration of the model.

Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 118
Author(s):  
Gabriele Guerrini ◽  
Stylianos Kallioras ◽  
Stefano Bracchi ◽  
Francesco Graziotti ◽  
Andrea Penna

This paper discusses different formulations for calculating earthquake-induced displacement demands to be associated with nonlinear static analysis procedures for the assessment of masonry structures. Focus is placed on systems with fundamental periods between 0.1 and 0.5 s, for which the inelastic displacement amplification is usually more pronounced. The accuracy of the predictive equations is assessed based on the results from nonlinear time-history analyses, carried out on single-degree-of-freedom oscillators with hysteretic force–displacement relationships representative of masonry structures. First, the study demonstrates some limitations of two established approaches based on the equivalent linearization concept: the capacity spectrum method of the Dutch guidelines NPR 9998-18, and its version outlined in FEMA 440, both of which overpredict maximum displacements. Two codified formulations relying on inelastic displacement spectra are also evaluated, namely the N2 method of Eurocode 8 and the displacement coefficient method of ASCE 41-17: the former proves to be significantly unconservative, while the latter is affected by excessive dispersion. A non-iterative procedure, using an equivalent linear system with calibrated optimal stiffness and equivalent viscous damping, is then proposed to overcome some of the problems identified earlier. A recently developed modified N2 formulation is shown to improve accuracy while limiting the dispersion of the predictions.


2018 ◽  
Vol 162 ◽  
pp. 04019 ◽  
Author(s):  
Sardasht Sardar ◽  
Ako Hama

Numerous recent studies have assessed the effect of P-Delta on the structures. This paper investigates the effect of P-Delta in seismic response of structures with different heights. For indicating the effect of P-Delta, nonlinear static analysis (pushover analysis) and nonlinear dynamic analysis (Time history analysis) were conducted by using finite element software. The results showing that the P-Delta has a significant impact on the structural behavior mainly on the peak amplitude of building when the height of the structures increased. In addition, comparison has been made between concrete and steel structure.


1994 ◽  
Vol 10 (03) ◽  
pp. 146-155
Author(s):  
Nicholas Hatzidakis ◽  
Michael M. Bernitsas

Five alternative configurations of orthogonally stiffened plates are compared in order to identify the total cost optimum design including material and fabrication cost. Size optimization is performed within the limitations of structural component standardization for each of the five alternatives. The five optimal structures are then compared in terms of weight, fabrication, and total cost. Discrete sizing optimization is performed in this paper with two design variables, i.e., plate thickness and standardized beam cross section. Constraints are imposed on secondary and tertiary stresses computed by finite-element analysis (FEA); and on primary stresses to prevent plate buckling, stiffener tripping, and overall buckling. Confidence is established in the FEA results by making comparisons with FEA results using the effective breadth method and orthotropic plate theory. Producibility constraints dictated by standardization in shipyard practice are imposed as well.


Sign in / Sign up

Export Citation Format

Share Document