scholarly journals Evaluation of p-delta effect in structural seismic response

2018 ◽  
Vol 162 ◽  
pp. 04019 ◽  
Author(s):  
Sardasht Sardar ◽  
Ako Hama

Numerous recent studies have assessed the effect of P-Delta on the structures. This paper investigates the effect of P-Delta in seismic response of structures with different heights. For indicating the effect of P-Delta, nonlinear static analysis (pushover analysis) and nonlinear dynamic analysis (Time history analysis) were conducted by using finite element software. The results showing that the P-Delta has a significant impact on the structural behavior mainly on the peak amplitude of building when the height of the structures increased. In addition, comparison has been made between concrete and steel structure.

2014 ◽  
Vol 8 (1) ◽  
pp. 310-323 ◽  
Author(s):  
Massimiliano Ferraioli ◽  
Alberto M. Avossa ◽  
Angelo Lavino ◽  
Alberto Mandara

The reliability of advanced nonlinear static procedures to estimate deformation demands of steel momentresisting frames under seismic loads is investigated. The advantages of refined adaptive and multimodal pushover procedures over conventional methods based on invariant lateral load patterns are evaluated. In particular, their computational attractiveness and capability of providing satisfactory predictions of seismic demands in comparison with those obtained by conventional force-based methods are examined. The results obtained by the static advanced methods, used in the form of different variants of the original Capacity Spectrum Method and Modal Pushover Analysis, are compared with the results of nonlinear response history analysis. Both effectiveness and accuracy of these approximated methods are verified through an extensive comparative study involving both regular and irregular steel moment resisting frames subjected to different acceleration records.


10.29007/pbdr ◽  
2018 ◽  
Author(s):  
Rutvik Sheth ◽  
Devesh Soni ◽  
Minoli Shah

Researchers and engineers certainly prefer to use nonlinear static methods over complicated nonlinear time-history methods. However, in nonlinear static procedure both predetermined target displacement and force distribution pattern are based on a false assumption that the structural behavior and its responses are dominated by the fundamental vibration modes. Therefore, over the past decades, there have been a great number of studies on considering higher mode contribution in nonlinear static results. The Displacement-based Adaptive Pushover Analysis (DAP) is one of the performance assessments tool for improving the accuracy of the obtained results of nonlinear static analysis in estimating the seismic demands of the structures. In this paper, 5 storey L- shaped RC frame is analyzed for seismic Zone IV and designed as per provisions of IS codes. Performance evaluation is carried out by nonlinear static analysis as well as adaptive pushover analysis and results are compared.


2009 ◽  
Vol 417-418 ◽  
pp. 777-780
Author(s):  
Pei Lei Yan ◽  
Bai Tao Sun ◽  
Hong Fu Chen

On 12 May 2008, a magnitude 8.0 earthquake happened in Wenchuan, China .It was the most serious earthquake in china since 1949, causing very huge casualties and engineering damages. The complex building of the Xuankou secondary school in Yingxiu town was designed by the Code for Seismic Design of Buildings of China (GB50011-2001), the seismic fortification intensity of the buildings was 7 degree. In the earthquake, it was destroyed most seriously, and the engineering damage was characteristic. In the paper, the property of material nonlinearity was considered ,the nonlinear analysis model of infilled frame structure was established, the time history analysis and nonlinear static analysis were used during inelastic stage, the main cause of structural destruction was obtained, the influence of the infill wall on the structure was discussed.Therefore ,the results can provide valuable reference for the seismic design of infilled frame structure.


2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Nidiasari Jati Sunaryati Eem Ikhsan

Struktur rangka baja pemikul momen merupakan jenis struktur baja tahan gempa yang populer digunakan. Daktilitas struktur yang tinggi merupakan salah satu keunggulan struktur ini, sehingga mampu menahan deformasi inelastik yang besar. Dalam desain, penggunaan metode desain elastis berupa evaluasi non-linear static (Pushover analysis) maupun evaluasi non-linear analisis (Time History Analysis) masih digunakan sebagai dasar perencanaan meskipun perilaku struktur sebenarnya saat kondisi inelastik tidak dapat digambarkan dengan baik. Metode Performance-Based Plastic Design (PBPD) berkembang untuk melihat perilaku struktur sebenarnya dengan cara menetapkan terlebih dahulu simpangan dan mekanisme leleh struktur sehingga gaya geser dasar yang digunakan adalah sama dengan usaha yang dibutuhkan untuk mendorong struktur hingga tercapai simpangan yang telah direncanakan. Studi dilakukan terhadap struktur baja 5 lantai yang diberi beban gempa berdasarkan SNI 1726, 2012 dan berdasarkan metode PBPD. Hasil analisa menunjukkan bahwa struktur yang diberi gaya gempa berdasarkan metode PBPD mencapai simpangan maksimum sesuai simpangan rencana dan kinerja struktur yang dihasilkan lebih baik .


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 118
Author(s):  
Gabriele Guerrini ◽  
Stylianos Kallioras ◽  
Stefano Bracchi ◽  
Francesco Graziotti ◽  
Andrea Penna

This paper discusses different formulations for calculating earthquake-induced displacement demands to be associated with nonlinear static analysis procedures for the assessment of masonry structures. Focus is placed on systems with fundamental periods between 0.1 and 0.5 s, for which the inelastic displacement amplification is usually more pronounced. The accuracy of the predictive equations is assessed based on the results from nonlinear time-history analyses, carried out on single-degree-of-freedom oscillators with hysteretic force–displacement relationships representative of masonry structures. First, the study demonstrates some limitations of two established approaches based on the equivalent linearization concept: the capacity spectrum method of the Dutch guidelines NPR 9998-18, and its version outlined in FEMA 440, both of which overpredict maximum displacements. Two codified formulations relying on inelastic displacement spectra are also evaluated, namely the N2 method of Eurocode 8 and the displacement coefficient method of ASCE 41-17: the former proves to be significantly unconservative, while the latter is affected by excessive dispersion. A non-iterative procedure, using an equivalent linear system with calibrated optimal stiffness and equivalent viscous damping, is then proposed to overcome some of the problems identified earlier. A recently developed modified N2 formulation is shown to improve accuracy while limiting the dispersion of the predictions.


2021 ◽  
Vol 11 (7) ◽  
pp. 3190
Author(s):  
Edmundo Schanze ◽  
Gilberto Leiva ◽  
Miguel Gómez ◽  
Alvaro Lopez

Engineering practitioners do not usually include soil–structure interactions in building design; rather, it is common to model and design foundations as embedded joints with joint–based reactions. In some cases, foundation structures are modeled as rigid bodies, embedding the first story into lower vertical elements. Given that the effects of underground floors on the seismic response are not generally included in current building design provisions, it has been little explored in the literature. This work compares and analyzes models to study the effects of different underground stories modeling approaches using earthquake vibration data recorded for the 16–story Alcazar building office in downtown Viña del Mar (Chile). The modeling expands beyond an embedded first story structure to soil with equivalent springs, representing soil–structure interaction (SSI), with varying rigid soil homogeneity. The building was modeled in a finite element software considering only dead load as a static load case because the structure remained in the framing stage when the monitoring system was operating. The instruments registered 72 aftershocks from the 2010 Maule Earthquake, and this study focused on 11 aftershocks of different hypocenters and magnitudes to collect representative information. The comparisons between empirical records and models in this study showed a better fit between the model and the real vibration data for the models that do consider the SSI using horizontal springs attached to the retaining walls of the underground stories. In addition, it was observed that applying a stiffness reduction factor of 0.7 to all elements in deformation verification models for average–height buildings was suitable to analyze the behavior under small earthquakes; better results are obtained embedding the structure in the foundation level than embedding in the street level; the use of horizontal springs with Kuesel’s model with traction for the analysis of the structure yields appropriate results; it is necessary to carefully select the spring constants to be used, paying special attention to the vertical springs. Even though the results presented herein indicate that the use of vertical springs to simulate the SSI of the base slab can result in major differences concerning the real response, it is necessary to obtain more data from instrumentation across a wider variety of structures to continue to evaluate better design and modeling practices. Similarly, further analyses, including nonlinear time–history and high–intensity events, are needed to best regulate building design.


2012 ◽  
Vol 594-597 ◽  
pp. 886-890 ◽  
Author(s):  
Gan Hong ◽  
Mei Li ◽  
Yi Zhen Yang

Abstract. In the paper, take full account of energy dissipation operating characteristics. Interlayer shear-frame structure for the analysis of the Wilson-Θmethod ELASTOPLASTIC schedule, the design of a nonlinear dynamic time history analysis procedure. On this basis, taking into account the restoring force characteristics of the energy dissipation system, the inflection point in the restoring force model treatment, to avoid a result of the calculation results of distortion due to the iterative error. A frame structure seismic response time history analysis results show that: the framework of the energy dissipation significantly lower than the seismic response of the common framework, and its role in the earthquake when more significant.


2011 ◽  
Vol 255-260 ◽  
pp. 806-810
Author(s):  
Biao Wei ◽  
Qing Yuan Zeng ◽  
Wei An Liu

Taking one irregular continuous bridge as an example, modal pushover analysis (MPA) has been conducted to judge whether it would be applicable for seismic analysis of irregular bridge structures. The bridge’s seismic demand in the transverse direction has been determined through two different methods, inelastic time history analysis (ITHA) and MPA respectively. The comparison between those two results indicates that MPA would be suitable only for bridges under elastic or slightly damaged state. Finally, some modifications are used to improve the MPA’s scope of application, and the results illustrate that the adapted MPA will be able to estimate bridges’ seismic demands to some extent.


2011 ◽  
Vol 243-249 ◽  
pp. 5208-5213
Author(s):  
Yong Feng Du ◽  
Xiao Yu Sun

As a result of adopting isolated bearings, it is inevitable to increase the lateral displacement of the superstructure and the chance of girder falling. However, the shear keys that just satisfies the structural design is far from meeting the requirements of displacement of isolated bridge restrictions. On account of this, given the nonlinear characteristics of bearings and the restrainer, the authors make the study on the "damping rubber with coupling collar" restrainer, and then establish isolation system model of continuous beam bridge with finite element software named Midas. Meanwhile, the effect of the restrainer on the dynamic response of isolated bridges is presented by time-history analysis, which reveals the great value in the application of limiting displacement of isolated bridge.


Author(s):  
Brian H. H. Peng ◽  
Gregory A. MacRae ◽  
Warren R. Walpole ◽  
Peter Moss ◽  
Rajesh Dhakal ◽  
...  

Several steel structure standards around the world contain an equation to encourage any column flexural yielding during earthquake shaking to occur at the column ends, rather than along the column length. The accuracy of these equations and their applicability to columns of both moment frames and braced frames are examined in this paper. It is shown, using an analytical procedure developed from first principles considering the reduction in member stiffness from axial force due to geometric and material nonlinearity, that the existing code equations are conservative. Less conservative empirical equations are developed based on the analysis results. It is found that these equations are applicable to frames with a braced connection, rather than a moment connection into the column. Time-history analysis of eccentrically-braced frames with inverted V-bracing, where the active link occurs at the centre of the beam, is carried out. The likely column end moment ratio needed for the new equations is determined. The analysis also shows that yielding often did not occur in the bottom story columns during earthquake excitations. A simple check is proposed to relate the axial force limit and the design drift to flexural yielding of columns which can be used in conjunction with the proposed equations.


Sign in / Sign up

Export Citation Format

Share Document