Fire Behavior of Sandwich Panels for Roofing Applications

2016 ◽  
Vol 711 ◽  
pp. 775-782 ◽  
Author(s):  
Giulio Zani ◽  
Marco Carlo Rampini ◽  
Matteo Colombo ◽  
Marco di Prisco

Cement-based multilayered panels represent a promising and cost-effective solution for the roofing of modern prefabricated buildings. Due to the spread of such technologies, it is deemed necessary to evaluate the structural performances also with reference to the fire scenario. In the framework of a research project financed by national and regional authorities, Politecnico di Milano coordinated a wide experimental campaign aimed at assessing the mechanical behavior of innovative composite elements (2.5 m wide, 5 m long). The paper presents the results pertaining to the full-scale test of a prototype at high temperatures - mainly focusing on Temperature-Time and Displacement-Time diagrams - and provides a fire resistance classification compatible with the observed failure mode.


Author(s):  
Monica Galdo-Vega ◽  
Rafael Ballesteros-Tajadura ◽  
Carlos Santolaria-Morros

In this work, a numerical 3D simulation of a longitudinal ventilation system is developed to analyze the fire behavior inside a road tunnel. Recent disasters, like crashes in the Mont Blanc tunnel (France, 1999) or San Gottardo (Italy, 2001), have shown the need for better integral actions during possible fire incidents. The minimum delay time, required for starting the jet fans, or the evolution of the smoke patterns inside the tunnel are critical issues when rescue plans are designed. Some methods to study the smoke propagation during a fire are: pseudo-thermal scale models, full scale test and numerical models. Several contributions using the first method can be found in references [1], [2] and [3]. However it is very difficult to extrapolate the results from this kind of models. The second method (full scale test) is the most expensive of all and only two of them have been conducted recently: EUREKA Project [4] and the Memorial Tunnel Fire Ventilation Test Program [5]. The last method (numerical models) it is now under development. The objective of this work is to validate a numerical model, to predict the behavior of the smoke generated during a fire incident inside a road tunnel, comparing its results with previous experimental data collected in the Memorial Tunnel Project. In addition, a good agreement was achieved, so a methodology to predict the performance of a longitudinal ventilation system in case of fire was accurately established.



2021 ◽  
Author(s):  
Amir Noorafkan

<div>Material testing is a crucial part of engineering design and development, especially in aerospace engineering as it is more cost effective to test an element or component than doing a full-scale test on the completed part. Typically, uniaxial testing is carried out to characterize a material,</div><div>which is adequate for finding the properties of the material. However, these kinds of tests are inadequate for simulating the real-world loading that a component may experience in its life cycle. Therefore, this project’s goal was to develop a low-cost biaxial testing apparatus using off-the-shelf components, including the Arduino Uno microcontroller (“Arduino”), stepper motors (“motors”), and load cell. This report outlines the development of the software required to</div><div>operate the motors and read output value of the load cell. The Arduino code used to control the motors was developed using open-source code available on GitHub and the Stepper library, which contains the required functions for controlling the motors. The Arduino code can be used</div><div>to determine the strain rate of up to 11 𝑚𝑚/𝑚𝑖𝑛, as well as the type of loading (tension or compression) along each axis. </div>



2018 ◽  
Vol 13 (4) ◽  
pp. 249-267
Author(s):  
Akiyoshi KAMURA ◽  
Motoki KAZAMA ◽  
Tadashi KAWAI ◽  
Jongkwan KIM ◽  
Tetsunori KUMADA ◽  
...  


2005 ◽  
Vol 8 ◽  
pp. 291-302
Author(s):  
Hisa Takeda


2021 ◽  
Author(s):  
Amir Noorafkan

<div>Material testing is a crucial part of engineering design and development, especially in aerospace engineering as it is more cost effective to test an element or component than doing a full-scale test on the completed part. Typically, uniaxial testing is carried out to characterize a material,</div><div>which is adequate for finding the properties of the material. However, these kinds of tests are inadequate for simulating the real-world loading that a component may experience in its life cycle. Therefore, this project’s goal was to develop a low-cost biaxial testing apparatus using off-the-shelf components, including the Arduino Uno microcontroller (“Arduino”), stepper motors (“motors”), and load cell. This report outlines the development of the software required to</div><div>operate the motors and read output value of the load cell. The Arduino code used to control the motors was developed using open-source code available on GitHub and the Stepper library, which contains the required functions for controlling the motors. The Arduino code can be used</div><div>to determine the strain rate of up to 11 𝑚𝑚/𝑚𝑖𝑛, as well as the type of loading (tension or compression) along each axis. </div>



1994 ◽  
Vol 1 (1) ◽  
pp. 77-83
Author(s):  
Yoshiji Moro ◽  
Tomoo Fujita ◽  
Takeshi Kanno ◽  
Akira Kobayashi


2019 ◽  
Vol 18 (1) ◽  
pp. 76-80 ◽  
Author(s):  
Kichul Kim ◽  
Pil-Ju Park ◽  
Soomi Eo ◽  
Seungmi Kwon ◽  
Kwangrae Kim ◽  
...  


1992 ◽  
Vol 35 (3) ◽  
pp. 977-985 ◽  
Author(s):  
K. G. Gebremedhin ◽  
J. A. Bartsch ◽  
M. C. Jorgensen


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1089
Author(s):  
Muhammad T. Sajjad ◽  
Ashu K. Bansal ◽  
Francesco Antolini ◽  
Eduard Preis ◽  
Lenuta Stroea ◽  
...  

Many displays involve the use of color conversion layers. QDs are attractive candidates as color converters because of their easy processability, tuneable optical properties, high photoluminescence quantum yield, and good stability. Here, we show that emissive QDs with narrow emission range can be made in-situ in a polymer matrix, with properties useful for color conversion. This was achieved by blending the blue-emitting pyridine based polymer with a cadmium selenide precursor and baking their films at different temperatures. To achieve efficient color conversion, blend ratio and baking temperature/time were varied. We found that thermal decomposition of the precursor leads to highly emissive QDs whose final size and emission can be controlled using baking temperature/time. The formation of the QDs inside the polymer matrix was confirmed through morphological studies using atomic force microscopy (AFM) and transmission electron microscopy (TEM). Hence, our approach provides a cost-effective route to making highly emissive color converters for multi-color displays.



Sign in / Sign up

Export Citation Format

Share Document