Influence of Process Parameters on Electric Upsetting Process by Using Finite Element Modeling

2017 ◽  
Vol 728 ◽  
pp. 42-47 ◽  
Author(s):  
Pattarapong Nuasri ◽  
Yingyot Aue-u-Lan

Electric Upsetting Process (EUP) is a process combining the forming process with the electric heating system. It is commonly used to manufacture a preform of a bar with high upsetting ratio, such as an axial shaft. The reliable forming process requires the understanding the effect of process and electrical parameters. Currently, the designer develops this process by trail-and-error. To successfully develop this process, the relationship between the electric heating and the forming parameters needs to be clearly understood. In this study, three parameters are investigated; namely anvil speed, upsetting load and heating voltage. Finite Element Modeling (FEM) is used as a tool for evaluating these parameters. The FEM results indicate that those parameters play significant roles on the material flow as well as the heating characteristics (i.e. temperature distributions and heat flow).

2004 ◽  
Vol 841 ◽  
Author(s):  
Yang-Tse Cheng ◽  
Che-Min Cheng

ABSTRACTUsing analytical and finite element modeling, we study conical indentation in linear viscoelastic solids and examine the relationship between initial unloading slope, contact depth, and viscoelastic properties. We will then discuss whether the Oliver-Pharr method for determining contact depth, originally proposed for indentation in elastic and elastic-plastic solids, is applicable to indentation in viscoelastic solids.


2011 ◽  
Vol 337 ◽  
pp. 236-241 ◽  
Author(s):  
Xin Hua Huang ◽  
Hua Xiang ◽  
Xin Cun Zhuang ◽  
Zhen Zhao

Nowadays, the compound fine-blanking forming process is one of the most important processes to produce complicate multifunctional parts without subsequent machining. However, the big die-roll occurs in the sharp area is a common problem in this process. In this paper, the method with negative punch-die clearance was proposed to solve this problem by comparing three feasible plans. In addition, the influence on the process with different value of the negative punch-die clearance was studied by the finite element method (FEM). The results of this study verified that the process with suitable value of the negative punch-die clearance can result in significant decrease of the die-roll size. The relationship between the material flow near the region of die-roll and the punch-die clearance was also clarified.


2015 ◽  
Vol 03 (03) ◽  
pp. 247-252 ◽  
Author(s):  
Xiaocen Dou ◽  
Sivakumar Dhar Malingam ◽  
Jae Nam ◽  
Shankar Kalyanasundaram

Sign in / Sign up

Export Citation Format

Share Document