Analysis of Creep Effects in a Concrete Beam Using Various Software

2017 ◽  
Vol 738 ◽  
pp. 79-88 ◽  
Author(s):  
Katarina Tvrda ◽  
Jana Drienovska

This article deals with determination of the strain of the beam caused by the creep effect. Instant deflection and simulation of creep function have been examined by SCIA Engineer, ANSYS and Marc software. Creep is a complex phenomenon, which is in every software configured differently. Therefore we would like to compare results of calculations obtained using various finite element method software. With increasing time, the deformation of a beam becomes non-linear analysis. Analysis involved monitoring of deflection in the middle of the beam depending on the time. In SCIA Engineer construction stages were created with the creep factor based on period of load. In the ANSYS software different method was selected and creep curve of concrete had been defined.

2011 ◽  
Vol 71-78 ◽  
pp. 722-727 ◽  
Author(s):  
Jing Bo An

In this paper, the tensile-compression prestressed concrete beam was researched, and gets deflection of the beam subjected to load. Then, the beam was analyzed by the finite element method of ANSYS software. The test and analysis results show that the beam has a good flexibility and the phenomenon of stress concentration were appeared in ends concrete of pre-compressed steel tube. The pre-compressed steel tube control stress is 0.5 times the nominal value of steel tube, the concrete pre-tensile stress can be obtained effectively by relaxes pre-compressed steel tube. This paper further optimizes the dosage of pre-tensile tendon (Ap), pre-compressed steel tube (AT), tensile reinforcements (As)and compression reinforcements (A`s).The results from example show that the concrete structure of tensile-compression prestressed can reduce the pressure area height of the beam effectively and solving conventional prestressed concrete structure excessive or cannot reinforcement in pressure area.


2014 ◽  
Vol 721 ◽  
pp. 131-134
Author(s):  
Mi Mi Xia ◽  
Yong Gang Li

To research the load upper bracket of Francis hydroelectric unit, then established the finite-element model, and analyzed the structure stress of 7 operating condition points with the ANSYS software. By the strain rosette test, acquired the data of stress-strain in the area of stress concentration of the upper bracket. The inaccuracy was considered below 5% by analyzing the contradistinction between the finite-element analysis and the test, and match the engineering precision and the test was reliable. The finite-element method could be used to judge the stress of the upper bracket, and it could provide reference for the Structural optimization and improvement too.


1986 ◽  
Vol 71 ◽  
Author(s):  
I. Suni ◽  
M. Finetti ◽  
K. Grahn

AbstractA computer model based on the finite element method has been applied to evaluate the effect of the parasitic area between contact and diffusion edges on end resistance measurements in four terminal Kelvin resistor structures. The model is then applied to Al/Ti/n+ Si contacts and a value of contact resistivity of Qc = 1.8×10−7.Ωcm2 is derived. For comparison, the use of a self-aligned structure to avoid parasitic effects is presented and the first experimental results obtained on Al/Ti/n+Si and Al/CoSi2/n+Si contacts are shown and discussed.


2001 ◽  
Author(s):  
Brian H. Dennis ◽  
George S. Dulikravich

Abstract A finite element method (FEM) formulation is presented for the prediction of unknown steady boundary conditions in heat conduction on multiply connected three-dimensional solid objects. The present FEM formulation is capable of determining temperatures and heat fluxes on the boundaries where such quantities are unknown or inaccessible, provided such quantities are sufficiently over-specified on other boundaries. Details of the discretization, linear system solution techniques, regularization, and sample results for 3-D problems are presented.


Sign in / Sign up

Export Citation Format

Share Document