prestressed concrete beam
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 17)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yongguang Wang

During the service period of a prestressed concrete bridge, as the number of cyclic loads increases, cumulative fatigue damage and prestress loss will occur inside the structure, which will affect the safety, durability, and service life of the structure. Based on this, this paper studies the loss of bridge prestress under fatigue load. First, the relationship between the prestress loss of the prestressed tendons and the residual deflection of the test beam is analyzed. Based on the test results and the main influencing factors of fatigue and creep, a concrete fatigue and creep calculation model is proposed; then, based on the static cracking check calculation method and POS-BP neural network algorithm, a prestressed concrete beam fatigue cracking check model under repeated loads is proposed. Finally, the mechanical performance of the prestressed concrete beam after fatigue loading is analyzed, and the influence of the fatigue load on the bearing capacity of the prestressed concrete beam is explored. The results show that the bridge prestress loss characterization model based on the POS-BP neural network algorithm has the advantages of high calculation efficiency and strong applicability.


2020 ◽  
Vol 10 (22) ◽  
pp. 7994
Author(s):  
Chi-Ho Jeon ◽  
Chang-Su Shim

The corrosion of prestressing steel in prestressed concrete bridges is a critical safety issue. To evaluate the strength of a prestressed concrete beam with corroded strands, it is necessary to know the mechanical properties of the corroded strands in terms of their tensile strength and ductility. In this study, material models were suggested using tensile tests of corroded strands which had been taken from existing bridges. Five prestressed concrete beams with multiple internal corroded strands of different corrosion levels and locations were fabricated and tested using the three-point bending test. The beams with corroded strands near the support did not show meaningful flexural behavior changes, while the beams with corrosion in the mid-span showed significant strength reduction. In order to suggest the appropriate evaluation of the flexural strength of a prestressed concrete beam with corroded strands, material models of the corroded strands were divided into two model categories: a bi-linear material model and a brittle material model. Strength evaluations of the corroded prestressed concrete beams according to fps approximation and strain-compatibility using OpenSEES were conducted. Results suggested the use of the strain compatibility method only when the section loss was greater than 5%.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yuanxun Zheng ◽  
Lei Yang ◽  
Pan Guo ◽  
Peibing Yang

In order to reveal the influence of freezing and thawing on fatigue properties of the prestressed concrete beam, a kind of novel freeze-thaw test method for large concrete structure components was proposed, and the freeze-thaw experiments and fatigue failure test of prestressed concrete hollow beams were performed in this paper. Firstly, the compressive strength and dynamic elastic modulus of standard specimens subjected to different numbers of freeze-thaw cycles (0, 50, 75, and 100) were determined. Then, the static and dynamic experiments were performed for prestressed concrete beams under different freeze-thaw cycles. Depending on the static failure test results, the fatigue load for the prestressed concrete beam model was carried out, the fatigue tests for prestressed concrete beam under freezing and thawing cycles were done, and the influence of fatigue loading times on dynamic and static characteristics of prestressed concrete beam was also studied. Finally, the relation between fatigue characteristics and numbers of freeze-thaw cycles was established, and the fatigue life prediction formulas of prestressed concrete beams under freeze-thaw cycles were developed. The research shows that the freezing and thawing cycles had obvious influence on fatigue life, and the freezing and thawing cycles should be taken into account for life prediction and quality evaluation of prestressed concrete beams.


Sign in / Sign up

Export Citation Format

Share Document