Numerical Simulation of Material Plastic Deformation Using the Drawing Forming Process of Contoured Internal Surface Tubes

2020 ◽  
Vol 841 ◽  
pp. 54-58
Author(s):  
Martin Necpal ◽  
Erika Hodúlová ◽  
Maroš Martinkovič

Production of multi-rifled seamless steel tubes employing cold draw process using multi-rifled mandrel is quite a modern technology. The important characteristic of the tube drawing process, unlike the tube with internal rifling, is the corner filling which influences the dimension accuracy of the internal shape of the tube. In this study, the influence of drawing tool dimensions and mandrel shape on to final rifling filling was investigated. Draw process has been simulated by using the three-dimensional rigid-plastic finite element method (FEM) by using DEFORM 3D software. The results of numerical simulation show that the shape of drawing tools and process conditions have a significant influence on the forming process and final shape and properties of the workpiece.

2011 ◽  
Vol 121-126 ◽  
pp. 1550-1554
Author(s):  
Dyi Cheng Chen ◽  
Ming Ren Chen ◽  
Fung Ling Nian

In recent years, the style of 3C products demanded thin and small results due to gradual trends, though most of the industry is forming a continuous manner of stamping. However, the material thickness cannot be changed in products. This paper employs the rigid-plastic finite element (FE) DEFORMTM 3D software to investigate the plastic deformation behavior of titanium alloy (Ti-6Al-4V) workpiece for the forming processes of cellphone covers. In addition, this study utilizes the Solid Work 2010 3D graphics-rendering software for modeling, which is simulation software used to import various forming process conditions. The software analyzes the effective strain, the effective stress, critical damage value, and the die radius load distribution of the work-piece. Furthermore, this study used simulative software to analyze its forming processes for changes in grain size of the microstructure. The analytical results confirm the suitability of the current finite element software for forming processes of cellphone covers.


2011 ◽  
Vol 396-398 ◽  
pp. 134-139
Author(s):  
An Long ◽  
Rui Ge ◽  
Yi Sheng Zhang ◽  
Li Bo Pan

To conclude the mechanics of fine blanking, the numerical simulation model of a cam’s fine blanking process was established, the forming process was simulated by DEFORM-3D software, the deform principle was summarized. Then the effect of three key processing parameters such as gap between punch and die, pressure-pad-force/counter force, serrated ring postion to fine blanking quality were researched, optimized parameters in fine blanking were gained.


2013 ◽  
Vol 798-799 ◽  
pp. 267-271
Author(s):  
Ren Jun Li ◽  
Ming Zhe Li ◽  
Zhong Yi Cai

Surface flexible rolling method, using two integral working rolls as the forming tool, can achieve fast, flexible and continuous manufacturing of three-dimensional sheet metal parts. This paper introduces the basic principle of surface flexible rolling and discusses the numerical simulation results when the working rolls are bended as circular arcs. The stability indicates the forming effect to some extent and the flow type of the metal can be deduced from stability analysis. To integrate and analyze the simulation results by means of reverse engineering. The analysis results show that the forming process is stable and the effect of surface flexible rolling is fine. It also indicates that inhomogeneous deformation and accumulation occurs during the process. The numerical simulation and experimental results demonstrate that the surface flexible rolling is a feasible and effective way to form three-dimensional sheet metal parts.


2011 ◽  
Vol 291-294 ◽  
pp. 269-272
Author(s):  
Ying Wu Lan ◽  
Zhong Yi Cai ◽  
Ming Zhe Li

The deformation of sheet metal in the continuous flexible forming (CFF) process is complex and the formed result is affected by many factors. In this paper, the finite element model of CFF was founded and the forming processes of spherical parts were simulated with the software ABAQUS. The interaction between transversal deformation and longitudinal deformation in the CFF process is analyzed. Based on results of numerical simulation and forming tests, the process parameters of CFF is revised, and formed surface is measured by three dimensional sensing system, the measured results indicate the precision of formed parts are satisfactory.


2012 ◽  
Vol 190-191 ◽  
pp. 121-125 ◽  
Author(s):  
Shan Yang ◽  
Lin Hua ◽  
Yan Li Song

Fine blanking, as an effective and economy metal forming process, can be used for the manufacturing of helical gears with inclined forming movement. In the present study, a reliable three-dimensional (3D) rigid-plastic finite element (FE) model is developed on the DEFORM-3D platform for rotational fine blanking of a helical gear. Based on this FE model, distributions of different field variables such as metal flow velocity, mean stress and effective strain are obtained, and cut surface features and punch stroke curve are predicted. The results achieved in this study can not only evaluate the capabilities of the rotational fine blanking process of a helical gear, but also provide valuable guidelines and a better understanding of the deformation mechanism of this process.


2014 ◽  
Vol 684 ◽  
pp. 252-258 ◽  
Author(s):  
Jun Hong Wang ◽  
Xu Dong Bao ◽  
Hai Mei Feng ◽  
Chang Du

Abstract: The design and manufacture of mold often rely on the experience of the designers, which led to the fact that the mold needs to be repeatedly debugged and corrected. Numerical simulation technology enables the simulation of the forming process of sheet metal and prediction of defects in design, thus to improve labor efficiency, save time and reduce costs. In this paper, the software Dynaform is used as a platform and a three-dimensional model is built to numerical simulate and analyze the drawing deep of a typical thin-walled cylindrical piece.Orthogonal experimentis adopted to analyze the impact of BHF, punching speed and punch-die gap on forming quality of the drawing pieces. With minimum thickness and wrinkling as indicators, the impact of various factors is analyzed and a set of optimum parameters is found out that is, BHF is 20kN, punching speed is 2000mm / s and punch-die gap is 0.9mm.


2012 ◽  
Vol 497 ◽  
pp. 356-364
Author(s):  
Qing Hua Yang ◽  
Jun Pan ◽  
Jun Xiong Zhang ◽  
Wen Biao Chen ◽  
Bin Meng

A three-layers assembled cavity die and its technological measures were designed for cold extrusion forming for the bevel gear. Numerical simulation of the cold extrusion forming process was applied using Deform-3D software, load curve, velocity field, stress field and temperature field were analyzed, thus obtain the basic knowledge of the law of the bevel gear deformation. Subsequent targets for optimization were introduced, aiming to solve the remaining problems of the current cold extrusion forming. The accomplished work shows some significance in guiding how to design a die and its technological measures.


2011 ◽  
Vol 704-705 ◽  
pp. 1492-1497
Author(s):  
Ji Shun Song ◽  
Yun Tao Li ◽  
De Heng Du ◽  
Xu Ma ◽  
Kang Yin

Eccentric extrusion method is used in this paper,through this method achieved bending aluminum-alloy tube extrusion forming process. Used finite element method,achieved three-dimensional numerical simulation of bending aluminum-alloy tube in eccentric extrusion by DEFORM-3D finite element commercial software,analyzed velocity field distribution,material flow,squeezing pressure,stress and strain field distribution of the process;Introduce the mechanism of one step direct extrusion forming tube bending process,it will be of great guiding significance the actual die design.


Sign in / Sign up

Export Citation Format

Share Document