The Study on the Dynamic Characteristic of High Speed Machine Tool and Experiment Validate

2004 ◽  
Vol 471-472 ◽  
pp. 765-769 ◽  
Author(s):  
Yi Min Zhang ◽  
Xiu Li Lin ◽  
Xiao Dong Wang ◽  
Guang Qi Cai

One of the important factors resulting in the high-speed machinery performance is its machine tool dynamic characteristic. It will directly influence the final manufacturing capability of the machinery and it is also the important criterion of evaluating machinery performances. Especially, the dynamic characteristic of spindle assembly has large effect on manufacturing capability of machinery. So it is very important both analyzing dynamic-static characteristic of the spindle assembly and machine tool of high-speed machinery and studying the effect to machinery function. Using Finite Element Analysis software did a Finite Element Analysis of spindle assembly of the high-speed machine tool, and some experiments are done to validate the result the Finite Element Analysis results.

2011 ◽  
Vol 52-54 ◽  
pp. 1206-1211 ◽  
Author(s):  
Huai Xing Wen ◽  
Mei Yan Wang

The thermal characteristics of the motorized spindle determines maching qualities and cutting capabilities, and is one of the important factors influencing the precision of the high speed NC machine tool. To improve the performance of the high speed machine tool, it is important to study the thermal characteristics of the motorized spindle. It had been studied in two ways: one is finite element analysis by Ansys software, in which the finite element analysis model was built. According to the actual working condition, the heat source and the heat transfer coefficient of every part are calculated. On this basis, the temperature field and temperature rises were gotten in Ansys software. The other way is temperature rises experiment on the motorized spindle test platform. The result was shown in the form of curve. These two ways shown the same result: the highest temperature rise appears in the area of electromotor, then followed by the rolling bearing .The result provides the necessary theory basis for optimizing the structure of the motorized spindle and establishes a basis for the research and application about the high speed spindle.


2009 ◽  
Vol 16-19 ◽  
pp. 510-514 ◽  
Author(s):  
Yao Man Zhang ◽  
Zhi Kun Xie ◽  
Yong Xian Liu

The linear rolling guideway is one of the most essential parts of the machine tool. So it is very important to analyze the dynamic-static characteristic of the machine tool consider rolling guideway and to study the effect on machinery function. The paper’s research is based on a NC machine tool produced by a certain plant of machine tools. Methods of simulating the rolling guideway support are studied, and the configuration of the spring damper elements of the bearing supports are also studied, and the finite element analysis on the CKS6125 machine tool has been made to confirm its dynamic characteristics. Then the finite element analysis models are validated by some experiments.


2009 ◽  
Vol 407-408 ◽  
pp. 135-139
Author(s):  
Yao Man Zhang ◽  
Xiu Li Lin ◽  
Chun Shi Liu ◽  
Guang Qi Cai

To design a machine tool successfully, its essential parts should be analyzed and evaluated after design but before prototype being made. The spindle assembly is one of the most essential parts of high speed machine tool, so how the dynamic characteristics of the spindle assembly affect the performance of high speed NC machine tool are of great significance and should be studied. This paper’s research is based on a high speed machine tool manufactured by some plant. The finite element analysis model of the spindle assembly of the high speed machine tool was developed by taking the advantage of the spring-damper element to simulate the bearing supports. The modal analysis was made to confirm the dynamic characteristics of the spindle assembly, and the results were compared with the testing ones.


2007 ◽  
Vol 353-358 ◽  
pp. 1927-1930
Author(s):  
Guo Shun Ji ◽  
Wen Wang ◽  
Yan Jun Huang ◽  
Zi Chen Chen

The leather is cut by hand or by hand with some help of semiautomatic machine in general leather cutting technology. In order to enhance the cutting efficiency and quality, the machine tool to realize high speed automatic leather cutting was developed. The final goal of the design is to cut a piece of hide on a working table with cutting velocity 2 meters per second, the dimension of the machine tool is big. It is very difficult to design the frame of this machine tool to meet the performance index for high speed cutting, so the static and dynamic force analysis to the body of it was implemented. First, the digital model of the body of it was built with AutoCAD software, then, the digital model in IGES format was transmitted to the Ansys software and the finite element analysis to it were carried out. Because the static force and vibration from driving system have great influence on the deformation of this machine tool and this deformation will affect the cutting precision and the whole performance of it. So the static force analysis and modal analysis were carried out. Finally, the results of finite element analysis were discussed, corresponding modification to the design was proposed. The analysis results indicate the mechanical property of the body of the developed machine can meet the requirements for high speed cutting.


2013 ◽  
Vol 589-590 ◽  
pp. 740-745
Author(s):  
Li Meng Wang ◽  
Xiao Zhou Li ◽  
Jin Kai Xu ◽  
Lin Lin ◽  
Jing Dong Wang ◽  
...  

In this paper, ultrasonic vibration turn-milling machine tool has been designed based on the analysis of processing principle . CATIA is used to generate three-dimensional solid model for the overall layout structure of high speed miniature lathe, while finite element analysis software is used to achieve dynamic performance analysis, so as to obtain each factorial of machine-tool vibration and natural frequency. The results are important to machine optimization and the construction of experimental prototype, and will guide the next work.


2007 ◽  
Vol 10-12 ◽  
pp. 258-262 ◽  
Author(s):  
Y. Lu ◽  
Ying Xue Yao ◽  
R.H. Hong

Motorized spindle is one of the core parts of high-speed machine tool, to a great extent, its thermal characteristics determine the thermal stress and thermal deformations, therefore the research on thermal characteristics is of great significance to increase the accuracy of high-speed machine tool. In this paper, the heat generation developed in the built-in motor and the bearings is calculated. The motorized spindle is modeled and its thermal characteristics analysis by finite element method is done using ANSYS software, in the foundation of analyzing its configuration and heat transfer. The variation regularity of its temperature-rise and temperature field is also summarized. Thereby it provides a powerful theoretical basis for reducing temperature–rise, calculating thermal deformations and improving working conditions.


2010 ◽  
Vol 139-141 ◽  
pp. 996-1000
Author(s):  
Yao Man Zhang ◽  
Zhi Kun Xie ◽  
Qi Wei Liu

To design a machine tool successfully, its essential parts should be analyzed and evaluated during the process of design. The liner motion guide is one of the most essential parts of the machine tool. So it is very important to analyze the dynamic-static characteristic of the machine tool consider linear motion guide and to study the effect on machinery function. The paper’s research is based on a NC machine tool produced by a certain plant of machine tools. Methods of simulating the linear rolling guide support are studied, and the configuration of the spring damper elements of the bearing supports are also studied, and the finite element analysis on the CKS6125 machine tool has been made to confirm its dynamic characteristics. Then the finite element analysis models are validated by some experiments.


2009 ◽  
Vol 626-627 ◽  
pp. 447-452 ◽  
Author(s):  
Yao Man Zhang ◽  
S.H. Wang ◽  
Yong Xian Liu

One of the important factors resulting in the performances of the machinery is its dynamic characteristics. The spindle assembly is one of the usual parts of NC machine tool, so its dynamic-static characteristics will affect the performances of machine tool. The study is based on a NC machine tool produced by a certain plant of machine tools. The finite element dynamic analysis model of spindle assembly was developed by introducing two or three groups of circumferential spring damper elements which are arrange at different angle around the spindle, and the effect of different supporting conditions and different arrange angle on the modal analysis of the spindle assembly were discussed. The finite element analysis on spindle and spindle assembly has been made to confirm its dynamic characteristics. Then the finite element analysis models are validated by some experiments.


2010 ◽  
Vol 37-38 ◽  
pp. 378-381 ◽  
Author(s):  
Yao Man Zhang ◽  
Zhi Kun Xie ◽  
Qi Wei Liu

The linear rolling guideway is one of the most essential parts of the machine tool. So it is very important to analyze the dynamic-static characteristic of the machine tool by considering rolling guideway for the study of the effect on machinery function. The research is based on a NC machine tool produced by a certain plant of machine tools. In this study, methods of simulating the rolling guideway support were studied; and the configuration of the spring damper elements of the bearing supports were investigated. The finite element analysis on the CKS6125 machine tool was used to confirm its dynamic characteristics. The finite element analysis models were validated by some experiments.


2015 ◽  
Vol 764-765 ◽  
pp. 289-293
Author(s):  
Yi Chang Wu ◽  
Han Ting Hsu

This paper presents the magnetostatic field analysis of a coaxial magnetic gear device proposed by Atallah and Howe. The structural configuration and speed reduction ratio of this magnetic gear device are introduced. The 2-dimensional finite-element analysis (2-D FEA), conducted by applying commercial FEA software Ansoft/Maxwell, is performed to evaluate the magnetostatic field distribution, especially for the magnetic flux densities within the outer air-gap. Once the number of steel pole-pieces equals the sum of the pole-pair numbers of the high-speed rotor and the low-speed rotor, the coaxial magnetic gear device possesses higher magnetic flux densities, thereby generating greater transmitted torque.


Sign in / Sign up

Export Citation Format

Share Document