High Temperature Deformation Behavior of Beta-Gamma TiAl Alloy

2007 ◽  
Vol 539-543 ◽  
pp. 1531-1536 ◽  
Author(s):  
J.S. Kim ◽  
You Hwan Lee ◽  
Young Won Kim ◽  
Chong Soo Lee

In this study, high-temperature deformation behavior of newly developed beta-gamma TiAl alloys was investigated in the context of the dynamic-materials model (DMM). Processing maps representing the efficiency of power consumption for microstructure evolution were constructed utilizing the results of compression test at temperatures ranging from 1000oC to 1200oC and strain rates ranging from 10-4/s to 102/s and Artificial Neural Network simulation method. With the help of processing map and microstructural analysis, the optimum processing condition for the betagamma TiAl alloy was investigated. The role of β phase was also discussed in this study.

2007 ◽  
Vol 539-543 ◽  
pp. 3607-3612 ◽  
Author(s):  
Jeoung Han Kim ◽  
Jong Taek Yeom ◽  
Nho Kwang Park ◽  
Chong Soo Lee

The high-temperature deformation behavior of the single-phase α (Ti-7.0Al-1.5V) and α + β (Ti-6Al-4V) alloy were determined and compared within the framework of self-consistent scheme at various temperature ranges. For this purpose, isothermal hot compression tests were conducted at temperatures between 650°C ~ 950°C to determine the effect of α/β phase volume fraction on average flow stress under hot-working condition. The flow behavior of α phase was estimated from the compression test results of single-phase α alloy whose chemical composition is close to that of α phase of Ti-6Al-4V alloy. On the other hand, the flow stress of β phase in Ti-6Al-4V was predicted by using self-consistent method. The flow stress of α phase was higher than that of β phase above 750°C, while the β phase revealed higher flow stress than α phase at 650°C. Also, at temperature above 750°C, the predicted strain rate of β phase was higher than that of α phase. It was found that the relative strength between α and β phase significantly varied with temperature.


2014 ◽  
Vol 52 ◽  
pp. 49-56 ◽  
Author(s):  
Jianbo Li ◽  
Yong Liu ◽  
Bin Liu ◽  
Yan Wang ◽  
Peng Cao ◽  
...  

2004 ◽  
Vol 449-452 ◽  
pp. 57-60
Author(s):  
I.G. Lee ◽  
A.K. Ghosh

In order to analyze high temperature deformation behavior of NiAl alloys, deformation maps were constructed for stoichiometric NiAl materials with grain sizes of 4 and 200 µm. Relevant constitute equations and calculation method will be described in this paper. These maps are particularly useful in identifying the location of testing domains, such as creep and tensile tests, in relation to the stress-temperature-strain rate domains experienced by NiAl.


Sign in / Sign up

Export Citation Format

Share Document