Effect of the Processing Conditions on the Mechanical Properties of Urethane Magnetorheological Elastomers

2008 ◽  
Vol 587-588 ◽  
pp. 630-634 ◽  
Author(s):  
Anna Boczkowska ◽  
Stefan F. Awietjan

The aim of the study was to develop an innovative processing method of magnetorheological elastomers (MRE). This method comprises optimization of the MRE structure in the context of their performance in the magnetic field. The influence of the amount of ferromagnetic particles and their arrangement in relation to the external magnetic field was investigated. Urethane magnetorheological elastomers were manufactured using polyurethane gels, supplied by Dow Chemical Company. As the ferromagnetic carbonyl–iron powder with particles size from 6-9)m produced by Fluka was used. The amount of the carbonyl iron particles was varied from 1.5 to 33.0 vol. %. Magnetic field strengths used during the fabrication of MRE were 0.1 and 0.3 T. The samples with particle chains aligned or slopped at 45 degree to the long sample axis were produced. To evaluate the external magnetic field effect on the magnetorheological properties a deflection in the magnetic field was measured. Samples were placed parallel to the magnetic field lines and deflected prior to the application of a magnetic field. After the application of the magnetic field the sample tended to straighten which was measured by displacement sensor. Magnetic field in a range of 0-0.9 T has been applied. Also the compression tests were carried out without and within external magnetic field with the strength of 0.3 T. The experiment showed that application of the magnetic field increases stiffness of the material. The amount of iron particles and their arrangement have influence on the stress-strain curves course.

2010 ◽  
Vol 636-637 ◽  
pp. 766-771 ◽  
Author(s):  
Anna Boczkowska ◽  
Stefan F. Awietjan

Magnetorheological elastomers (MREs) were obtained by mixing soft polyurethane and carbonyl-iron particles. The effect of the volume fraction of the ferromagnetic particles on the MREs microstructure and properties, as well as their arrangement in relation to the external magnetic field were investigated. As a ferromagnetic component carbonyl–iron powder, with particle size from 6-9µm, was used. The amount of the carbonyl iron particles was varied from 1.5 to 33.0 %(v/v). The samples were produced with randomly dispersed and aligned carbonyl iron particles. Scanning electron and light microscopy techniques were used for the MRE microstructure observations. The rheological properties (G’, G’’ and tan δ) of the MRE were tested without and with the application of the magnetic field. It was found that the microstructure of MREs, particularly the amount and arrangement of the carbonyl-iron particles, has a significant influence on their rheological and damping properties.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Keisuke Negami ◽  
Tetsu Mitsumata

AbstractMagnetic field effect on the elasticity was investigated for magnetic carrageenan gel when a shear and compressional deformation was applied to the gel. The magnetic carrageenan gel consists of carrageenan of a polysaccharide, and carbonyl iron particles. The dynamic viscoelastic measurement with shear strain revealed that the storage shear modulus of the gel increased from 1.0×104 to 2.3×106 Pa by applying a magnetic field of 320 mT. On the other hand, the compression measurement showed that the Young’s modulus increased from 6.2×104 to 5.9×105 Pa. The relative changes in the modulus with respect to the original modulus were 230 for shear strain and 9.5 for compressional strain, respectively. This strongly indicates that the magnetic field effect on viscoelasticity strongly depends on the geometry of directions of magnetic field and strain. The effect of vibration suppression of the present gel tuned by magnetic field is also presented.


2019 ◽  
Vol 33 (25) ◽  
pp. 1950290
Author(s):  
Salah Aguib ◽  
Abdelkader Nour ◽  
Toufik Djedid

Materials with novel properties and compounds of intelligent material combinations are a key to innovation in various successful sectors of the global industry as well as for its export. Magnetorheological elastomer materials have interesting physical properties; most of these properties are modified and adapted under the influence of external parameters such as the magnetic field. In this work, an experimental characterization of the magnetorheological elastomers (MRE) loaded with 20% of the iron particles was made. The results showed that the properties of these materials can be modified very selectively and reversibly under the influence of magnetic field, where the stiffness of the material varies depending on the magnetic field intensity that influences the attractive force between iron particles.


2009 ◽  
Vol 152-153 ◽  
pp. 190-193 ◽  
Author(s):  
G.V. Stepanov ◽  
Dmitry Yu. Borin ◽  
Stefan Odenbach ◽  
A.I. Gorbunov

In the present paper we report temperature dependent magnetization measurements done on a magneto-active elastomers (MAEs) consisting of a siloxane rubber filled with carbonyl iron particles. The experiments performed in this study are similar to the conventional Zero-Field-Cooled and Field-Cooled magnetic tests. To the best of our knowledge, this approach, successfully used for studies on magnetic fluids, has never ever been applied to MAE. This test allowed us to reveal the effect of change of MAE structure under the action of an external magnetic field.


2007 ◽  
Vol 21 (28n29) ◽  
pp. 4875-4882 ◽  
Author(s):  
X. L. GONG ◽  
L. CHEN ◽  
J. F. LI

This paper presents two kinds of magnetorheological elastomers (MREs). One is composed of appropriate silicon rubber, carbonyl iron particles and some other materials. It is cured under a strong magnetic field at a room temperature. Its shear modulus change from 0.34MPa at zero magnetic field to 3.34MPa at 1T magnetic field, the relative MR effect reaches 878%. Such high MR effect has not been reported until now. The other is composed by appropriate natural rubber, carbonyl iron particles and some other materials. After the compositions are mixed in a two-roll mill, they are cured under a strong magnetic field according to a temperature profile. The increment of its modulus reaches 3.6MPa, and the relative modulus increment is 133%. Their mechanical properties are also evaluated. All observed results show that the fabricated MREs are utilizable. They have successfully been utilized to adaptive tuned vibration absorbers, which will serve for vibration absorption of vehicles.


2018 ◽  
Vol 772 ◽  
pp. 51-55 ◽  
Author(s):  
Nor Azlin Nazira Abd Rahman ◽  
Saiful Amri Mazlan ◽  
Siti Aishah Abdul Aziz ◽  
Nur Azmah Nordin ◽  
Ubaidillah ◽  
...  

In this study, magnetorheological elastomers (MREs) were synthesized using silicone rubber (SR) as the matrix element interspersed with 70 weight percent of corroded carbonyl iron particles (CIPs). The CIPs were corroded in dilute hydrochloric acid (HCl) for 4 hours. The rheological properties related to MR effect were experimentally examined in the absence and presence of magnetic field at various current using a rheometer. The experimental results depicted the MR effect of the MRE with corroded CIPs decreased one-half, 27% as compared to the non-corroded samples, 58%. The correlation between the purity of CIPs and storage modulus of MR elastomer is examined in this study.


2004 ◽  
Vol 9 (2) ◽  
pp. 129-138
Author(s):  
J. Kleiza ◽  
V. Kleiza

A method for calculating the values of specific resistivity ρ as well as the product µHB of the Hall mobility and magnetic induction on a conductive sample of an arbitrary geometric configuration with two arbitrary fitted current electrodes of nonzero length and has been proposed an grounded. During the experiment, under the constant value U of voltage and in the absence of the magnetic field effect (B = 0) on the sample, the current intensities I(0), IE(0) are measured as well as the mentioned parameters under the effect of magnetic fields B1, B2 (B1 ≠ B2), i.e.: IE(β(i)), I(β(i)), i = 1, 2. It has been proved that under the constant difference of potentials U and sample thickness d, the parameters I(0), IE(0) and IE(β(i)), I(β(i)), i = 1, 2 uniquely determines the values of the product µHB and specific resistivity ρ of the sample. Basing on the conformal mapping method and Hall’s tensor properties, a relation (a system of nonlinear equations) between the above mentioned quantities has been found.


2013 ◽  
Vol 49 (1-2) ◽  
pp. 237-248
Author(s):  
A. V. Beznosov ◽  
O. O. Novozhilova ◽  
S. Yu. Savinov ◽  
M. V. Yarmonov ◽  
R. E. Alekseev

2011 ◽  
Vol 228-229 ◽  
pp. 1007-1011
Author(s):  
Wei Wei Zhang ◽  
Long Qiu Li ◽  
Guang Yu Zhang ◽  
Hui Juan Dong

The effect of an external magnetic field on the hydration behavior of nanoscopic n-octane plates has been extensively investigated using molecular dynamics simulation in an isothermal-isobaric ensemble. The solute plates with different intermolecular spacing have also been considered to examine the effect of the topology of hydrophobic plates on the adsorption behavior of confined water in the presence of an external magnetic field with an intensity ranging from 0.1T to 1 T. The results demonstrate that magnetic exposure decreases the density of water for the plates with intermolecular spacing of a0 = 4 and 5 Å. This suggests that the free energy barrier for evaporation can be lowered by the applied field, and the hydrophobic solutes consisting of condensed n-octane molecules are apt to aggregate in the aqueous solution. In contrast, the magnetic field improves the dissolution or wetting of solutes comprised of loosely packed n-octane plates of a0=7Å. A magnetic-field-induced adsorption-to-desorption translation, which is in agreement with the experimental results provided by Ozeki, has also been observed for the plates with intermolecular spacing of a0 = 6 Å.


Sign in / Sign up

Export Citation Format

Share Document