Corrosion Protection and Microstructure of Magnesium Alloys Anodized by Phosphate Solution

2010 ◽  
Vol 638-642 ◽  
pp. 1464-1469
Author(s):  
Koji Murakami ◽  
Makoto Hino ◽  
Atsushi Saijo ◽  
Teruto Kanadani

Corrosion protection by anodization and conversion treatment in phosphate solution was studied by microstructural and electrochemical analysis. Both the anodized and the conversion-treated layers showed sacrificial protection in a solution of sodium chloride. The corrosion current or the dissolving rate of the anodized layer was smaller than that of the conversion-treated surface. The modified layers had another mode of protection to form protective films on magnesium substrate where the original modified layers were mechanically lost. Since the state of magnesium in the anodized layer is close to magnesium oxide, phosphorus in the layer is considered to have an important role in these properties concerning the above corrosion protection.

2011 ◽  
Vol 2011.49 (0) ◽  
pp. 447-448
Author(s):  
Atsushi Saitou ◽  
Atsushi Saijo ◽  
Teruto Kanadani ◽  
Koji Murakami ◽  
Makoto Hino

2015 ◽  
Vol 3 (8) ◽  
pp. 1667-1676 ◽  
Author(s):  
Jiadi Sun ◽  
Ye Zhu ◽  
Long Meng ◽  
Wei Wei ◽  
Yang Li ◽  
...  

Self-assembled nanoparticles loaded with bioactive agents were electrodeposited to provide the magnesium alloy with controlled release and corrosion resistance properties.


2021 ◽  
Vol 13 (1) ◽  
pp. 152-160
Author(s):  
Yanjie Wang ◽  
Xuru Hou ◽  
Lin Zhao ◽  
Yun Peng ◽  
Chengyong Ma ◽  
...  

304 stainless steel test block was fabricated by continuous melting wire with CMT and pulse mixed mode, and the path of additive manufacturing is layered slice S-shaped. The relationship between microstructure and properties of the specimen was investigated by microscope, SEM, EBSD, XRD, tensile, impact and electrochemical experiments. The results show that molding between weld and weld is very good, and the microstructure is mainly Austenite, Ferrite and a little of σ, and there are three kinds of Ferrite morphology: cellular, wormlike and lath. σ phase precipitates easily in regions with high ferrite content and is distributed at the boundary between austenite and ferrite. The specimen has good low temperature toughness. The microscopic fracture surface is mainly dimple, and the precipitates in the fracture surface are mainly fine carbide particles. The tensile strength of the additive manufacturing 304 specimen is higher than the forged specimen, and the type of fracture is ductile fracture. The electrochemical analysis of 304 stainless steel specimens and forgings shows that CMT and pulse arc additive manufacturing specimen has excellent corrosion resistance and its corrosion current is slightly lower than the forging.


2021 ◽  
Vol 04 ◽  
Author(s):  
Diego Moreira Schlemper ◽  
Sérgio Henrique Pezzin

: Self-healing coatings are intended to increase long-term durability and reliability and can be enabled by the presence of microcapsules containing a self-healing agent capable of interacting with the matrix and regenerating the system. This review article provides an overview of the state-of-the-art, focusing on the patents published in the field of microcapsule-based self-healing organic coatings, since the early 2000’s. A discussion about coatings for corrosion protection and the different self-healing approaches and mechanisms are also addressed, as well as future challenges and expectations for this kind of coatings.


Sign in / Sign up

Export Citation Format

Share Document