On Design of Metal-Matrix Composites Lighter than Air

2012 ◽  
Vol 736 ◽  
pp. 55-71
Author(s):  
Jerzy J. Sobczak ◽  
Ludmil B. Drenchev ◽  
Natalia Sobczak ◽  
Rajiv Asthana

This paper discusses some theoretical aspects of design of ultralight metallic materials using analytical and heuristic arguments. Potential application of syntactic foams to obtain metal-matrix composites lighter than air is also analyzed. Carbon allotropes (fullerenes, colossal carbon tubes) and some non-carbon materials are considered as components of ultralight metal-matrix composites. Calculations for the size of fullerenes, number of atoms in their structure, and coating thickness required to produce ultralight composites are presented. It is concluded that 3D carbon molecules (fullerenes) and colossal carbon tubes are the most promising components to design ultralight metallic materials which can be lighter than air.

2015 ◽  
Vol 766-767 ◽  
pp. 281-286 ◽  
Author(s):  
G. Anbuchezhiyan ◽  
B. Mohan ◽  
R.V. Karthikeyan

The presence of Hollow particles instead of gas porosity provides a closed cell structure called Syntactic foams. Syntactic foams have gained significant attention in recent years due to their low density, moisture absorption and thermal expansion coefficient compared to other cellular materials, such as open and closed cell structured foams. In terms of mechanical behavior, it is generally more insightful to compare metal matrix syntactic foams with metal foams and metal matrix composites. In comparison with metal foams, they have high compressive yield strength and more homogenous mechanical properties but usually higher densities and lower plasticity. In comparison with metal matrix composites, they have lower strength but offer compressibility, which is not existence in metal matrix composites. Syntactic foams have been extensively studied for aluminum based metal matricesand polymer matrices. Importance in magnesium foams is increasing in recent periods due to their very low density. Only a few studies are available on magnesium matrix syntactic foams processed through powder metallurgy techniques. This review presents an overview of hollow particle filled magnesium matrix (AZ91D/microballons) syntactic foams using powder metallurgy methods.


1992 ◽  
pp. 21-152 ◽  
Author(s):  
K. Welpmann ◽  
M. Peters ◽  
R. Braun ◽  
G. Staniek ◽  
F. Lehnert ◽  
...  

JOM ◽  
2018 ◽  
Vol 70 (6) ◽  
pp. 846-854 ◽  
Author(s):  
Volkan Kilicli ◽  
Xiaojun Yan ◽  
Nathan Salowitz ◽  
Pradeep K. Rohatgi

Author(s):  
A. Lawley ◽  
M. R. Pinnel ◽  
A. Pattnaik

As part of a broad program on composite materials, the role of the interface on the micromechanics of deformation of metal-matrix composites is being studied. The approach is to correlate elastic behavior, micro and macroyielding, flow, and fracture behavior with associated structural detail (dislocation substructure, fracture characteristics) and stress-state. This provides an understanding of the mode of deformation from an atomistic viewpoint; a critical evaluation can then be made of existing models of composite behavior based on continuum mechanics. This paper covers the electron microscopy (transmission, fractography, scanning microscopy) of two distinct forms of composite material: conventional fiber-reinforced (aluminum-stainless steel) and directionally solidified eutectic alloys (aluminum-copper). In the former, the interface is in the form of a compound and/or solid solution whereas in directionally solidified alloys, the interface consists of a precise crystallographic boundary between the two constituents of the eutectic.


Author(s):  
M. G. Burke ◽  
M. N. Gungor ◽  
P. K. Liaw

Aluminum-based metal matrix composites offer unique combinations of high specific strength and high stiffness. The improvement in strength and stiffness is related to the particulate reinforcement and the particular matrix alloy chosen. In this way, the metal matrix composite can be tailored for specific materials applications. The microstructural characterization of metal matrix composites is thus important in the development of these materials. In this study, the structure of a p/m 2014-SiC particulate metal matrix composite has been examined after extrusion and tensile deformation.Thin-foil specimens of the 2014-20 vol.% SiCp metal matrix composite were prepared by dimpling to approximately 35 μm prior to ion-milling using a Gatan Dual Ion Mill equipped with a cold stage. These samples were then examined in a Philips 400T TEM/STEM operated at 120 kV. Two material conditions were evaluated: after extrusion (80:1); and after tensile deformation at 250°C.


Sign in / Sign up

Export Citation Format

Share Document