Effect of Minor Addition Ta on the Thermal Stability and Corrosion Resistance of Ti-Zr-Cu-Pd Bulk Metallic Glasses

2013 ◽  
Vol 750 ◽  
pp. 23-26 ◽  
Author(s):  
Feng Xiang Qin ◽  
Guo Qiang Xie ◽  
Sheng Li Zhu ◽  
Zhen Hua Dan

In this research, the effect of Ta addition on the formation, thermal stability and corrosion behavior of Ti-Zr-Cu-Pd bulk metallic glasses were investigated. The results revealed with minor addition of Ta, higher corrosion resistance and compressive strength as well as large plastic deformation were achieved. Minor addition Ta is effective for the formation of more protectively passive film during the process of anodic polarization. In addition, proper volume fraction nanoparticle with small size is responsible for the large plastic deformation of the as-cast Ti-based bulk metallic glasses with 1% Ta addition.

2011 ◽  
Vol 110 (2) ◽  
pp. 023513 ◽  
Author(s):  
Yanhui Li ◽  
Wei Zhang ◽  
Chuang Dong ◽  
Chunling Qin ◽  
Jianbing Qiang ◽  
...  

2009 ◽  
Vol 24 (2) ◽  
pp. 316-323 ◽  
Author(s):  
C.L. Qin ◽  
W. Zhang ◽  
K. Asami ◽  
N. Ohtsu ◽  
A. Inoue

Bulk metallic glasses (BMGs) with high thermal stability and good corrosion resistance were synthesized in the (Cu0.6Hf0.25Ti0.15)100−x−yNiyNbx system by copper mold casting. The addition of Ni element causes an extension of a supercooled liquid region (ΔTx = Tx – Tg) from 60 K for Cu60Hf25Ti15 to 70 K for (Cu0.6Hf0.25Ti0.15)95Ni5. The simultaneous addition of Ni and Nb to the alloy is effective in improving synergistically the corrosion resistance in 1 N HCl, 3 mass% NaCl, and 1 N H2SO4 + 0.01 N NaCl solutions. The highly protective Hf-, Ti-, and Nb-enriched surface film is formed by the rapid initial preferential dissolution of Cu and Ni, which is responsible for the high corrosion resistance of the alloys in the solutions examined.


2014 ◽  
Vol 24 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Rafał Babilas ◽  
Katarzyna Cesarz-Andraczke ◽  
Dorota Babilas ◽  
Wojciech Simka

2012 ◽  
Vol 536 ◽  
pp. S117-S121 ◽  
Author(s):  
Y.H. Li ◽  
W. Zhang ◽  
C. Dong ◽  
J.B. Qiang ◽  
G.Q. Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document