High-Energy Ball Milling and Sintering of Ti-2Ta-22Si-11B and Ti-6Ta-22Si-11B Powders Mixtures

2014 ◽  
Vol 802 ◽  
pp. 20-24 ◽  
Author(s):  
Lucas Moreira Ferreira ◽  
Luciano Braga Alkmin ◽  
Érika C.T. Ramos ◽  
Carlos Angelo Nunes ◽  
Alfeu Saraiva Ramos

The milling process of elemental Ti-2Ta-22Si-11B and Ti-6Ta-22Si-11B (at-%) powder mixtures were performed in a planetary Fritsch P-5 ball mill using stainless steel vials (225 mL) and hardened steel balls (19 mm diameter). Ball-to-powder weight ratio of 10:1 and a rotary speed of 300 rpm were adopted, varying the milling time. Wet milling (isopropyl alcohol) for 20 more minutes was used to increase the yield powder in to the vial. Following the Ti-Ta-Si-B powders milled for 600 min were heat-treated at 1100°C for 1 h in order to obtain the equilibrium structures. The milled powders and heat-treated samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. Supersaturated Ti solid solutions were formed during ball milling of Ti-Ta-Si-B powders while that the Ti5Si3 phase was formed after milling for 620 min of the Ta-richer powder mixture only. The particles sizes were initially increased during the initial milling times, and the wet milling provided the yield powder into the vials. A large amount of pores was found in both the sintered samples which presented the formation of the TiSS,(ss-solid solution) Ti6Si2B and TiB.

2017 ◽  
Vol 899 ◽  
pp. 499-504
Author(s):  
Luiz Otávio Vicentin Maruya ◽  
Paulo Atsushi Suzuki ◽  
Alfeu Saraiva Ramos

Multicomponent Ti6Si2B-based alloys are potentially attractive for structural applications due to the low Ti6Si2B crystallographic anisotropy, and their oxidation resistance are higher than the Ti5Si3-based alloys. There is a limited amount of information on effect of alloying on stability of Ti6Si2B. The present work reports on the structural evaluation during ball milling and subsequent sintering of Ti-2Cr-22Si-11B and Ti-7Cr-22Si-11B (at-%) powders. The milling process was carried out in a planetary Fritsch P-5 ball mill under Ar atmosphere using hardened steel balls (19 mm diameter), stainless steel vials (225 mL), rotary speed of 300 rpm, and a ball-to-powder weight ratio of 10:1. Samples were collected after different milling times: 20, 60, 180, 300, 420 and 600 min. Addicional wet milling (isopropyl alcohol) for 20 more minutes was adopted to increase the yield powder into the vials. Following, the powders milled for 620 min were uniaxially compacted (20 MPa) in order to obtain cilinder green bodies with 10 mm diameter and subsequently sintered under vacuum at 1100°C for 240 min. The milled powders were characterized by X-ray diffraction, and scanning electron microscopy. The chromium addition have contributed to form a large amount of Ti6Si2B in the mechanically alloyed and sintered Ti-2Cr-22Si-11B and Ti-7Cr-22Si-11B alloys.


2012 ◽  
Vol 727-728 ◽  
pp. 222-226 ◽  
Author(s):  
Ana Clara Ferraretto ◽  
Erika Coaglia Trindade Ramos ◽  
Alfeu Saraiva Ramos

This paper reports on the phase transformation during the preparation of Ni-25Nb, Ni-25Ta, Ni-20Nb-5Ta and Ni-15Nb-10Ta (at-%) powders by high-energy ball milling from elemental powders. The milling process was performed in a planetary ball milling using stainless steel balls and vials, rotary speed of 300rpm, and a ball-to-powder of 10:1. To minimize contamination and spontaneous ignition the powders were handled under argon atmosphere in a glove box. The milled powders were characterized by means of X-ray diffraction techniques. Results indicated that the Ni atoms were preferentially dissolved into the Nb (and/or Ta) lattice at the initial milling times, which contributed to change the relative intensity on the diffraction peaks. After the dissolution of Nb (and/or Ta) into the Ni lattice, the Ni peaks were moved to the direction of lower diffraction angles in Ni-25Nb, Ni-25Ta, Ni-20Nb-5Ta, Ni-15Nb-10Ta powders, indicating that the mechanical alloying was achieved. .


2014 ◽  
Vol 802 ◽  
pp. 29-34
Author(s):  
Leandro Koji Kayano ◽  
Daniel Murusawa ◽  
Gilda Maria Cortez Pereira ◽  
Alfeu Saraiva Ramos

This work presents the results on the high-energy ball milling and hot pressing of Ni-48Ti-2Sn and Ni-45Ti-5Sn (at-%) powder mixtures. The milling process was performed in a planetary ball mill using stainless steel vial (225 mL) and hardened steel balls (19 mm diameter), rotary speed of 300 rpm, and a ball-to-powder weight ratio of 10:1. Samples were collected into the vial after different milling times: 60, 180 and 300 min. In the sequence, wet milling (isopropyl alcohol) was adopted up to 720 min in order to increase the powder yield into the vials. The as-milled and hot-pressed samples were characterized by X-ray diffraction, electron scanning microscopy, and energy dispersive spectrometry. Results indicated that the ductile particles were promptly cold-welded during the initial milling times. XRD patterns of the Ni-48Ti-2Sn powder mixture indicated that the peaks of Ni, Ti and Sn disappeared after milling for 3h. Following, peaks of NiTi and Ni4Ti3were preferentially formed during milling of Ni-Ti-Sn powders. A large amount of fine powders was yielded into the vial after wet milling for 720 min only. No significant carbon or oxygen contamination was detected by EDS analysis. Hot pressing produced homogeneous and dense samples which presented microstructures containing a large amount of the NiTi compound.


2006 ◽  
Vol 530-531 ◽  
pp. 217-222 ◽  
Author(s):  
C.B. Martins ◽  
Bruno Bacci Fernandes ◽  
Erika Coaglia Trindade Ramos ◽  
Gilbert Silva ◽  
Alfeu Saraiva Ramos

The aim of this work is to prepare the Ni3Ti, NiTi, and NiTi2 compounds by mechanical alloying from elemental Ni-25at.%Ti, Ni-50at.%Ti, and Ni-66.6at.%Ti powder mixtures. The milling process was carried out in a planetary ball mill under argon atmosphere using a rotary speed of 200rpm, stainless steel balls (10 and 19 mm diameters) and vials (225mL), and a ball-to-powder weight ratio of 10:1. Following, the milled powders were heat treated at 900oC for 1h in order to attain the equilibrium microstructures. The milled powders were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and microanalysis via EDS. Similar ball milling behavior of Ni-Ti powders was noted in this work, e.g., a pronounced cold-welding between ductile powders occurred during the initial milling times. The Ni3Ti, NiTi, and NiTi2 compounds were synthesized after milling for 30h. Atomic disordering of the NiTi and NiTi2 compounds was achieved, and amorphous structures were then formed in Ni-50Ti e Ni-66.6Ti powders milled for 60h and 210h, respectively. Homogeneous matrixes constituted by the Ni3Ti, NiTi, and NiTi2 phases were formed in Ni-Ti powders after heat treatments at 900oC for 1h. Iron contamination lower than 2 at-% was measured by EDS analysis in heat-treated Ni-Ti alloys.


2012 ◽  
Vol 727-728 ◽  
pp. 233-238
Author(s):  
Gilda Maria Cortez Pereira ◽  
Marisa Aparecida de Souza ◽  
Tomaz Manabu Hashimoto ◽  
Vinicius André Rodrigues Henriques ◽  
Alfeu Saraiva Ramos

This work discusses on the preparation of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr (at-%) alloys by high-energy ball milling and hot pressing, which are potentially attractive for dental and medical applications. The milling process was performed in stainless steel balls (19mm diameter) and vials (225 mL) using a rotary speed of 300rpm and a ball-to-powder weight ratio of 10:1. Hot pressing under vacuum was performed in a BN-coated graphite crucible at 900°C for 1 h using a load of 20 MPa. The milled and hot-pressed materials were characterized by X-ray diffraction, electron scanning microscopy, and electron dispersive spectrometry. Peaks of B2-NiTi and Ni4Ti3were identified in XRD patterns of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr powders milled for 1h. The NiTi compound dissolved small Mo amounts lower than 4 at%, which were measured by EDS analysis. Moreover, it was identified the existence of an unknown Mo-rich phase in microstructures of the hot-pressed Ni-Ti-Mo alloys.


2012 ◽  
Vol 59 (2) ◽  
Author(s):  
Nurulhuda Bashirom ◽  
Nurzatil Ismah Mohd Arif

This paper presents a study on the effect of milling speed on the synthesis of Cu-WC nanocomposites by mechanical alloying (MA). The Cu-WC nanocomposite with nominal composition of 25 vol.% of WC was produced in-situ via MA from elemental powders of copper (Cu), tungsten (W), and graphite (C). These powders were milled in the high-energy “Pulverisette 6” planetary ball mill according to composition Cu-34.90 wt% W-2.28 wt% C. The powders were milled in different milling speed; 400 rpm, 500 rpm, and 600 rpm. The milling process was conducted under argon atmosphere by using a stainless steel vial and 10 mm diameter of stainless steel balls, with ball-to-powder weight ratio (BPR) 10:1. The as-milled powders were characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). XRD result showed the formation of W2C phase after milling for 400 rpm and as the speed increased, the peak was broadened. No WC phase was detected after milling. Increasing the milling speed resulted in smaller crystallite size of Cu and proven to be in nanosized. Based on SEM result, higher milling speed leads to the refinement of hard W particles in the Cu matrix. Up to the 600 rpm, the unreacted W particles still existed in the matrix showing 20 hours milling time was not sufficient to completely dissolve the W.


2014 ◽  
Vol 802 ◽  
pp. 14-19
Author(s):  
Carlos Edilson Chiaradia ◽  
Luciano Braga Alkmin ◽  
Carlos Ângelo Nunes ◽  
Vinícius André Rodrigues Henriques ◽  
Gilda Maria Cortez Pereira ◽  
...  

The work reports on the phase transformation in mechanically alloyed and hot-pressed Nb-4Si-8B and Nb-8Si-16B (at-%) alloys. Elemental powder mixtures were processed in a planetary ball mill under argon atmosphere using 300 rpm, stainless steel balls (19 mm diameter) and vials (225 mL), and a ball-to-powder weight ratio of 10:1. After dry milling for 7h, wet milling with isopropyl alcohol for more 20 min was adopted to increase the recovering of previously cold-welded Nb-4Si-8B powders. To obtain the equilibrium structures the as-milled powders were hot-pressed under vacuum at 1200oC for 1 h. The as-milled powders and hot-pressed samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. XRD results revealed the presence of metastable phases in as-milled Nb-Si-B powders. The hot pressing has produced dense Nb-Si-B samples, which were formed by the Nbss, Nb3B2and Fe2Nb phases beside of other unknown Si-rich phase.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1621
Author(s):  
Jesus Rios ◽  
Alex Restrepo ◽  
Alejandro Zuleta ◽  
Francisco Bolívar ◽  
Juan Castaño ◽  
...  

Commercial powders of pure magnesium were processed by high-energy ball milling. The microstructural and morphological evolution of the powders was studied using scanning electron microscopy (SEM), energy dispersive spectrometry (EDX) and X-ray diffraction (XRD). From the results obtained, it was determined that the ball size is the most influential milling parameter. This was because balls of 1 mm diameter were used after a previous stage of milling with larger balls (i.e., 10 and 3 mm). The powder particles presented an unusual morphology with respect to those observed in the Mg-milling literature and recrystallization phenomena. Moreover, the result strongly varied depending on the ball-to-powder weight ratio (BPR) used during the milling process.


2017 ◽  
Vol 899 ◽  
pp. 3-8
Author(s):  
Luiz Otávio Vicentin Maruya ◽  
Bruno Bacci Fernandes ◽  
Mario Ueda ◽  
Alfeu Saraiva Ramos

This work reports on effect of magnesium addition on the Ti6Si2B stability in Ti-xMg-22Si-11B (x = 2 and 6 at.-%) alloys prepared by high-energy ball milling and subsequent sintering. Ball milling was conducted under Ar atmosphere in stainless steel vials and balls, 300 rpm, and a ball-to-powder weight ratio of 10:1. Following, the powders milled for 10 h were axially compacted in order to obtain cylinder samples with 6 mm diameter. To obtain the equilibrium structures the green samples were sintered at 1100°C for 4 h under Ar atmosphere. X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry were used to characterize the as-milled powders and sintered samples. Extended Ti solid solution were found in the Ti-2Mg-22Si-11B and Ti-7-Mg-Si-B powders milled for 20 min and 60 min, respectively, whereas an amorphous halo was produced on Ti-2Mg-22Si-11B powders milled for 420 min. The increase of Mg amount in the starting powder mixture has inhibited the Ti6Si2B formation in the mechanically alloyed and sintered Ti-7Mg-22Si-11B alloy.


2016 ◽  
Vol 869 ◽  
pp. 423-428
Author(s):  
Hanna Stefanni Nunes Benites ◽  
Bruna Pereira da Silva ◽  
Antonio Augusto Araújo Pinto da Silva ◽  
Belmira Benedita de Lima ◽  
Gilberto Carvalho Coelho ◽  
...  

The present work reports on the formation of Ni3Ta, Ni2Ta and NiTa by high-energy ball milling and subsequent heat treatment. The elemental Ni-25Ta, Ni-33Ta and Ni-50Ta (at.-%) powder mixtures were ball milled under Ar atmosphere using stainless steel balls and vials as well as 300 rpm and a ball-to-powder weight ratio of 10:1. Following, the as-milled samples were uniaxially compacted and heat-treated under Ar atmosphere at 1100°C for 4h. The characterization of as-milled and heat-treated samples was conducted by means of X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry techniques. Supersaturated solid solutions were formed during ball milling of the Ni-25Ta, Ni-33Ta and Ni-50Ta powders. A large amount of Ni3Ta, Ni2Ta and NiTa was formed in the mechanically alloyed heat-treated Ni-25Ta, Ni-33Ta and Ni-50Ta alloys, respectively.


Sign in / Sign up

Export Citation Format

Share Document