Effect of Milling Speed on the Synthesis of In-Situ Cu-25 Vol. % WC Nanocomposite by Mechanical Alloying

2012 ◽  
Vol 59 (2) ◽  
Author(s):  
Nurulhuda Bashirom ◽  
Nurzatil Ismah Mohd Arif

This paper presents a study on the effect of milling speed on the synthesis of Cu-WC nanocomposites by mechanical alloying (MA). The Cu-WC nanocomposite with nominal composition of 25 vol.% of WC was produced in-situ via MA from elemental powders of copper (Cu), tungsten (W), and graphite (C). These powders were milled in the high-energy “Pulverisette 6” planetary ball mill according to composition Cu-34.90 wt% W-2.28 wt% C. The powders were milled in different milling speed; 400 rpm, 500 rpm, and 600 rpm. The milling process was conducted under argon atmosphere by using a stainless steel vial and 10 mm diameter of stainless steel balls, with ball-to-powder weight ratio (BPR) 10:1. The as-milled powders were characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). XRD result showed the formation of W2C phase after milling for 400 rpm and as the speed increased, the peak was broadened. No WC phase was detected after milling. Increasing the milling speed resulted in smaller crystallite size of Cu and proven to be in nanosized. Based on SEM result, higher milling speed leads to the refinement of hard W particles in the Cu matrix. Up to the 600 rpm, the unreacted W particles still existed in the matrix showing 20 hours milling time was not sufficient to completely dissolve the W.

2012 ◽  
Vol 59 (2) ◽  
Author(s):  
Nurulhuda Bashirom ◽  
Hazni Fazliana Kassim

This paper presents a study on the effect of milling time on the synthesis of Cu-WC nanocomposites by mechanical alloying (MA). The Cu-WC nanocomposite with a nominal composition of 25 vol.% of WC was produced in-situ via MA from elemental powders of copper (Cu), tungsten (W), and graphite (C). These powders were milled in the high-energy “Pulverisette 6” planetary ball mill according to the composition Cu-34.90 wt.% W-2.28 wt.% C. The powders were milled in the different milling times; 16 hours, 32 hours, and 48 hours at rotational speed of 600 rpm. The milling process was conducted under argon atmosphere by using a stainless steel vial and 10 mm diameter of stainless steel balls, with ball-to-powder weight ratio (BPR) 10:1. The as-milled powders were characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). XRD result indicated the formation of WC after milling for 32 hours, and the peak broadening was observed at higher milling time. From SEM observations, the particle size of Cu-25 vol.% WC composites was gradually refined with increasing milling time until the homogenous microstructure was obtained at 48 hours of milling, even though there were still some unreacted W particles existed in the matrix. Increasing milling time resulted in smaller crystallite size and higher lattice strain of Cu. The overall result demonstrates that the longer milling time can be used to achieve WC reinforced copper matrix nanocomposite.


2014 ◽  
Vol 802 ◽  
pp. 20-24 ◽  
Author(s):  
Lucas Moreira Ferreira ◽  
Luciano Braga Alkmin ◽  
Érika C.T. Ramos ◽  
Carlos Angelo Nunes ◽  
Alfeu Saraiva Ramos

The milling process of elemental Ti-2Ta-22Si-11B and Ti-6Ta-22Si-11B (at-%) powder mixtures were performed in a planetary Fritsch P-5 ball mill using stainless steel vials (225 mL) and hardened steel balls (19 mm diameter). Ball-to-powder weight ratio of 10:1 and a rotary speed of 300 rpm were adopted, varying the milling time. Wet milling (isopropyl alcohol) for 20 more minutes was used to increase the yield powder in to the vial. Following the Ti-Ta-Si-B powders milled for 600 min were heat-treated at 1100°C for 1 h in order to obtain the equilibrium structures. The milled powders and heat-treated samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. Supersaturated Ti solid solutions were formed during ball milling of Ti-Ta-Si-B powders while that the Ti5Si3 phase was formed after milling for 620 min of the Ta-richer powder mixture only. The particles sizes were initially increased during the initial milling times, and the wet milling provided the yield powder into the vials. A large amount of pores was found in both the sintered samples which presented the formation of the TiSS,(ss-solid solution) Ti6Si2B and TiB.


2019 ◽  
Vol 56 ◽  
pp. 109-118
Author(s):  
Sofiane Mimouche ◽  
M. Azzaz

Some years ago a new process was developed for the elaboration of alloys in order to overcome drawbacks observed in samples produced by conventional casting. In the present work are shown the results obtained by high energy mechanical milling for Cu-Al-Ni. the mechanical alloying powder Cu84Al12Ni4 (W%) was fabricated in high energy planetary ball milling at a speed of 250 r/min for various milling times (10 20 30 40 50 60 hours) the weight ratio of the balls of powder was 15 to 1. this mechanical alloying process is significantly modifying the characteristic of the powder, the recovered grains are ultimately compacted. The means used to study the different evolution are SEM Scaning Electron Microscopy, Differential thermal analysis DTA, X-ray Diffraction analysis and DRX in situ.


2006 ◽  
Vol 530-531 ◽  
pp. 217-222 ◽  
Author(s):  
C.B. Martins ◽  
Bruno Bacci Fernandes ◽  
Erika Coaglia Trindade Ramos ◽  
Gilbert Silva ◽  
Alfeu Saraiva Ramos

The aim of this work is to prepare the Ni3Ti, NiTi, and NiTi2 compounds by mechanical alloying from elemental Ni-25at.%Ti, Ni-50at.%Ti, and Ni-66.6at.%Ti powder mixtures. The milling process was carried out in a planetary ball mill under argon atmosphere using a rotary speed of 200rpm, stainless steel balls (10 and 19 mm diameters) and vials (225mL), and a ball-to-powder weight ratio of 10:1. Following, the milled powders were heat treated at 900oC for 1h in order to attain the equilibrium microstructures. The milled powders were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and microanalysis via EDS. Similar ball milling behavior of Ni-Ti powders was noted in this work, e.g., a pronounced cold-welding between ductile powders occurred during the initial milling times. The Ni3Ti, NiTi, and NiTi2 compounds were synthesized after milling for 30h. Atomic disordering of the NiTi and NiTi2 compounds was achieved, and amorphous structures were then formed in Ni-50Ti e Ni-66.6Ti powders milled for 60h and 210h, respectively. Homogeneous matrixes constituted by the Ni3Ti, NiTi, and NiTi2 phases were formed in Ni-Ti powders after heat treatments at 900oC for 1h. Iron contamination lower than 2 at-% was measured by EDS analysis in heat-treated Ni-Ti alloys.


2012 ◽  
Vol 620 ◽  
pp. 94-98 ◽  
Author(s):  
Siti Zalifah Md Rasib ◽  
Zuhailawati Hussain

Milling process through mechanical alloying method was performed on a powder mixture of Fe-80.11 wt%, Nb-17.62 wt% and C-2.26 wt% to produce Fe-NbC composite by in situ reaction. Ball to powder weight ratio parameter was selected since formation of phase and microstructure characteristics of this composite were expected to depend on ball collision event during milling. The as-milled and sintered Fe-NbC was characterized by X-ray diffraction (XRD) and Scanning Electron Microscopic (SEM). We found that formation of Fe-NbC by in situ required mechanical alloying of the mixture using 10:1 of ball to powder weight ratio to achieve small crystallite size and more homogeneous of NbC phase.


2012 ◽  
Vol 05 ◽  
pp. 496-501 ◽  
Author(s):  
S. SHEIBANI ◽  
S. HESHMATI-MANESH ◽  
A. ATAIE

In this paper, the influence of toluene as the process control agent (PCA) and pre-milling on the extension of solid solubility of 7 wt.% Cr in Cu by mechanical alloying in a high energy ball mill was investigated. The structural evolution and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, respectively. The solid solution formation at different conditions was analyzed by copper lattice parameter change during the milling process. It was found that both the presence of PCA and pre-milling of Cr powder lead to faster dissolution of Cr . The mean crystallite size was also calculated and showed to be about 10 nm after 80 hours of milling.


2012 ◽  
Vol 1456 ◽  
Author(s):  
Tsung-ta E. Chan ◽  
Rama Venkatasubramanian ◽  
James M. LeBeau ◽  
Peter Thomas ◽  
Judy Stuart ◽  
...  

ABSTRACTNanocomposite Bi2Te3 based alloys are attractive for their potentially high thermoelectric figure-of-merit (ZT) around room temperature. The nano-scale structural features embedded in the matrix provide more scattering of phonons and can thus reduce the lattice thermal conductivity. To further take advantage of such nanocomposite structures, we focus on the development of nanocrystalline Bi(Sb)Te(Se) powders by high energy cryogenic mechanical alloying followed by an optimized hot pressing process. This approach is shown to successfully produce Bi(Sb)Te(Se) alloy powders with grain size averaging about 9 nm for n-type BiTe(Se) and about 16 nm for p-type Bi(Sb)Te respectively. This cryogenic process offers much less milling time and prevents thermally activated contamination or imperfections from being introduced during the milling process. The nanocrystalline powders are then compacted at optimized pressures and temperatures to achieve full density compactions and preserve the grain sizes effectively. The resulting nano-bulk materials have optimal Seebeck coefficients and are expected to have improved ZT. Thermoelectric properties and microstructure studies by X-ray diffraction and transmission electron microscopy will also be presented and discussed.


Author(s):  
José Luis Iturbe-García ◽  
Manolo Rodrigo García-Núñez ◽  
Beatriz Eugenia López-Muñoz

Mg2Ni was synthesized by a solid state reaction from the constituent elemental powder mixtures via mechanical alloying. The mixture was ball milled for 10 h at room temperature in an argon atmosphere. The high energy ball mill used here was fabricated at ININ. A hardened steel vial and three steel balls of 12.7 mm in diameter were used for milling. The ball to powder weight ratio was 10:1. A small amount of powder was removed at regular intervals to monitor the structural changes. All the steps were performed in a little lucite glove box under argon gas, this glove box was also constructed in our Institute. The structural evolution during milling was characterized by X-ray diffraction and scanning electron microscopy techniques. The hydrogen reaction was carried out in a micro-reactor under controlledconditions of pressure and temperature. The hydrogen storage properties of mechanically milled powders were evaluated by using a TGA system. Although homogeneous refining and alloying take place efficiently by repeated forging, the process time can be reduced to one fiftieth of the time necessary for conventional mechanical milling and attrition.        


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 842
Author(s):  
Claudiney Mendonça ◽  
Patricia Capellato ◽  
Emin Bayraktar ◽  
Fábio Gatamorta ◽  
José Gomes ◽  
...  

The aim of this study was to provide an experimental investigation on the novel method for recycling chips of duplex stainless steel, with the addition of vanadium carbide, in order to produce metal/carbide composites from a high-energy mechanical milling process. Powders of duplex stainless steel with the addition of vanadium carbide were prepared by high-energy mechanical ball milling utilizing a planetary ball mill. For this proposal, experiments following a full factorial design with two replicates were planned, performed, and then analyzed. The four factors investigated in this study were rotation speed, milling time, powder to ball weight ratio and carbide percentage. For each factor, the experiments were conducted into two levels so that the internal behavior among them could be statistically estimated: 250 to 350 rpm for rotation speed, 10 to 50 h for milling time, 10:1 to 22:1 for powder to ball weight ratio, and 0 to 3% carbide percentage. In order to measure and characterize particle size, we utilized the analysis of particle size and a scanning electron microscopy. The results showed with the addition of carbide in the milling process cause an average of reduction in particle size when compared with the material without carbide added. All the four factors investigated in this study presented significant influence on the milling process of duplex stainless steel chips and the reduction of particle size. The statistical analysis showed that the addition of carbide in the process is the most influential factor, followed by the milling time, rotation speed and powder to ball weight ratio. Significant interaction effects among these factors were also identified.


Sign in / Sign up

Export Citation Format

Share Document