Comparative Study of Small Scale Soil Barrier Subjected to Air Blast Load by Using AUTODYN 2D and AUTODYN 3D

2015 ◽  
Vol 819 ◽  
pp. 417-422 ◽  
Author(s):  
J. Jestin ◽  
Ali Faisal ◽  
Ahmad Zaidi Ahmad Mujahid ◽  
Othman Mohd Zaid

This paper presents the blast loading of small scale soil barrier subjected to surface burst,analysed by using AUTODYN 2D and AUTODYN 3D.Results from the AUTODYN analyses are then compared with published experimental results. Good agreements with published experimental results are obtained for numerical analysis by using AUTODYN 3D for peak pressure at the front part of the barrier. In this case study, AUTODYN 2D numerical analyses provide higher pressure readingsat about 62% and 36% differences as compared with the published experimental results for pressure measurement at the middle front and back of soil barrier surface. The discrepancy of AUTODYN2D results was due to geometric dissimilarity from the actual experimental test. For complex geometries shape of barrier, that involves different shapes and configurations, three dimensional analyses are required to accurately predict the complex reflections and interactions associated with the propagation of the blast wave.

1999 ◽  
Vol 6 (2) ◽  
pp. 73-80 ◽  
Author(s):  
W.K Chong ◽  
K.Y. Lam ◽  
K.S. Yeo ◽  
G.R. Liu ◽  
O.Y. Chong

This paper presents a comparison of simulation’s results with the experimental data from a series of small-scale tests conducted by Joachim and Lunderman of the United States Army Engineer Waterways Experiment Station. The purpose of the experiments was to evaluate the effect of water as a mean of reducing airblast pressure from accidental explosions in underground magazines. In the present study, a series of three-dimensional numerical calculations were conducted using a Multimaterial Eulerian Finite Element Code. Results from the numerical simulations show good comparison with the experimental data for the case with and without water. Our simulation ascertains the mitigation effects of water in reducing the maximum peak pressure and impulse density due to an explosion.


2010 ◽  
Vol 6 (S274) ◽  
pp. 140-142
Author(s):  
S. L. Guglielmino ◽  
V. Martínez Pillet ◽  
J. C. del Toro Iniesta ◽  
L. R. Bellot Rubio ◽  
F. Zuccarello ◽  
...  

AbstractThanks to the unprecedented combination of high spatial resolution (0″.2) and high temporal cadence (33 s) spectropolarimetric measurements, the IMaX magnetograph aboard the Sunrise balloon-borne telescope is revealing new insights about the plasma dynamics of the all-pervasive small-scale flux concentrations in the quiet Sun. We present the result of a case study concerning the appearance of a bipole, with a size of about 4″ and a flux content of 5 × 1017 Mx, with strong signal of horizontal fields during the emergence. We analyze the data set using the SIR inversion code and obtain indications about the three-dimensional shape of the bipole and its evolution with time.


2012 ◽  
Vol 755 (2) ◽  
pp. 160 ◽  
Author(s):  
Carola I. Ellinger ◽  
Patrick A. Young ◽  
Christopher L. Fryer ◽  
Gabriel Rockefeller

2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Thirumal Valavan Harikrishnan ◽  
Suryanarayana Challa ◽  
Dachapalli Radhakrishna

This study was carried out with an objective to develop a 3D simulation methodology for rotary engine combustion study and to investigate the effect of recess shapes on flame travel within the rotating combustion chamber and its effects on engine performance. The relative location of spark plugs with respect to the combustion chamber has significant effect on flame travel, affecting the overall engine performance. The computations were carried out with three different recess shapes using iso-octane (C8H18) fuel, and flame front propagation was studied at different widths from spark location. Initially, a detailed leakage study was carried out and the flow fields were compared with available experimental results. The results for first recess with compression ratio 9.1 showed that the flow and vortex formations were similar to that of actual model. The capability of the 3D model to predict the combustion reaction rate precisely as that of practical engine is presented with comparison to experimental results. This study showed that the flame propagation is dominant toward the leading apex of the rotor chamber, and the air/fuel mixture region in the engine midplane, between the two spark plugs, has very low flame propagation compared to the region in the vicinity of spark. The air/fuel mixture in midplane toward the leading apex burns partially and most of the mixture toward the trailing apex is left unburnt. Recommendations have been made for optimal positioning of the spark plugs along the lateral axis of the engine. In the comparison study with different recess shapes, lesser cavity length corresponding to a higher compression ratio (CR) of 9.6 showed faster flame propagation toward leading side. Also, mass trapped in working chamber reduced and developed higher burn rate and peak pressure resulting in better fuel conversion efficiency. Third recess with lesser CR showed reduced burn rates and lower peak pressure.


Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


2019 ◽  
Vol 24 (42) ◽  
pp. 4991-5008 ◽  
Author(s):  
Mohammed S. Algahtani ◽  
Abdul Aleem Mohammed ◽  
Javed Ahmad

Three-dimensional printing (3DP) has a significant impact on organ transplant, cosmetic surgery, surgical planning, prosthetics and other medical fields. Recently, 3 DP attracted the attention as a promising method for the production of small-scale drug production. The knowledge expansion about the population differences in metabolism and genetics grows the need for personalised medicine substantially. In personalised medicine, the patient receives a tailored dose and the release profile is based on his pharmacokinetics data. 3 DP is expected to be one of the leading solutions for the personalisation of the drug dispensing. This technology can fabricate a drug-device with complicated geometries and fillings to obtain the needed drug release profile. The extrusionbased 3 DP is the most explored method for investigating the feasibility of the technology to produce a novel dosage form with properties that are difficult to achieve using the conventional industrial methods. Extrusionbased 3 DP is divided into two techniques, the semi-solid extrusion (SSE) and the fused deposition modeling (FDM). This review aims to explain the extrusion principles behind the two techniques and discuss their capabilities to fabricate novel dosage forms. The advantages and limitations observed through the application of SSE and FDM for fabrication of drug dosage forms were discussed in this review. Further exploration and development are required to implement this technology in the healthcare frontline for more effective and personalised treatment.


Sign in / Sign up

Export Citation Format

Share Document