Crystal Structure of L6, L4-8, L3-12 and L4-6-12 Graphene Polymorphs

2016 ◽  
Vol 845 ◽  
pp. 247-250
Author(s):  
A.E. Kochengin ◽  
Evgeniy A. Belenkov

Calculations of the structure and electronic properties of crystals composed of graphene layers L6, L4-8, L3-12 and L4-6-12 were performed within the framework of density functional theory (DFT) with generalized gradient approximations (GGA). It was found out, that crystals of the four main types of graphene are to have metallic properties.

RSC Advances ◽  
2018 ◽  
Vol 8 (25) ◽  
pp. 13850-13856 ◽  
Author(s):  
Assa Aravindh Sasikala Devi ◽  
Iman S. Roqan

The structural stability and magnetic properties of a grain boundary (GB) formed by two ZnO single crystals oriented at 45° is investigated by density functional theory, using generalized gradient approximation (GGA) with Hubbard parameter (U).


2020 ◽  
Vol 22 (26) ◽  
pp. 14712-14719
Author(s):  
Xiaotong Yan ◽  
Yuhua Hou ◽  
Shouhong Zheng ◽  
Youlin Huang ◽  
Wei Li ◽  
...  

Herein, the feasibility of Fe substitution by Ga, Ge and As in Li2FeSiO4 in modulating its structural, mechanical, electrochemical, capacity and electronic properties was systematically studied via first-principles calculations based on density functional theory within the generalized gradient approximation with Hubbard corrections (GGA+U).


2017 ◽  
Vol 31 (12) ◽  
pp. 1750086 ◽  
Author(s):  
A. Benmakhlouf ◽  
D. Errandonea ◽  
A. Bouhemadou ◽  
A. Bentabet ◽  
S. Maabed ◽  
...  

The structural, mechanical, and electronic properties of scheelite-type CaWO4, SrWO4, and BaWO4 have been investigated using density-functional theory (DFT) within the generalized-gradient approximation (GGA). In particular, we have studied the effect of pressure in the crystal structure, elastic constants [Formula: see text], elastic moduli ([Formula: see text], [Formula: see text] and [Formula: see text]), and elastic anisotropy. We have also investigated the band structure of the three studied compounds and the effect of pressure in their electronic bandgap. The obtained results compare well with experimental results regarding the high-pressure (HP) behavior of the crystal structure. The reported calculations allow us to get a better understanding of effects caused by compression on scheelite-type oxides and to predict the HP response of physical properties of importance for different technological applications.


2021 ◽  
Vol 32 (2) ◽  
pp. 6-11
Author(s):  
Fatimah Arofiati Noor ◽  
Erik Bhekti Yutomo ◽  
Toto Winata

This study investigated the structural and electronic properties of bulk, bilayer, and monolayer SnSe using the density functional theory (DFT) method. We succeeded in calculating the bandgap and identifying accurately the transformation of the band structure from bulk to monolayer systems using generalized gradient approximation. An increase in the lattice parameter a and a decrease in the lattice parameter b were observed when the bulk dimensions were reduced to a monolayer. The reduction of van der Waals interactions when the dimensions of a system are reduced is the main factor that causes changes in lattice parameters. The indirect bandgap of bulk SnSe (0.56 eV, 0.3∆→0.7Σ) becomes wider in the monolayer system (0.94 eV, 0.2∆→0.8Σ). Bandgap widening is predicted due to the emergence of the quantum confinement effect in low-dimensional systems. Furthermore, we found the formation of a quasi-degenerate minimum conduction band in the monolayer SnSe. With the formation of these bands, we predict the monolayer SnSe will have better thermoelectric properties than the bulk or bilayer system. This study provides an in-depth understanding of the electronic structure of SnSe and its correlation to thermoelectric properties.


2017 ◽  
Vol 231 (7-8) ◽  
Author(s):  
Vanessa Werth ◽  
Kai Volgmann ◽  
Mazharul M. Islam ◽  
Paul Heitjans ◽  
Thomas Bredow

AbstractIn many applications it has been found that the standard generalized gradient approximation (GGA) does not accurately describe weak chemical bond and electronic properties of solids containing transition metals. In this work, we have considered the intercalation material 1T-Li


Author(s):  
Wei-Feng Xie ◽  
Hao-Ran Zhu ◽  
Shi-Hao Wei

The structural evolutions and electronic properties of Au$_l$Pt$_m$ ($l$+$m$$\leqslant$10) clusters are investigated by using the first$-$principles methods based on density functional theory (DFT). We use Inverse design of materials by...


Sign in / Sign up

Export Citation Format

Share Document