Advanced Intermetallic TiAl Alloys

2016 ◽  
Vol 879 ◽  
pp. 113-118 ◽  
Author(s):  
Helmut Clemens ◽  
Svea Mayer

Challenging issues concerning energy efficiency and environmental politics require novel approaches to materials design. A recent example with regard to structural materials is the emergence of lightweight intermetallic TiAl alloys. Their excellent high-temperature mechanical properties, low density, and high stiffness constitute a profile perfectly suitable for their application as advanced aero-engine turbine blades or as turbocharger turbine wheels in next-generation automotive engines. Advanced so-called 3rd generation TiAl alloys, such as the TNM alloy described in this paper, are complex multi-phase alloys which can be processed by ingot or powder metallurgy as well as precision casting methods. Each process leads to specific microstructures which can be altered and optimized by thermo-mechanical processing and/or subsequent heat treatments.

2014 ◽  
Vol 783-786 ◽  
pp. 2097-2102 ◽  
Author(s):  
Svea Mayer ◽  
Emanuel Schwaighofer ◽  
Martin Schloffer ◽  
Helmut Clemens

Urgent needs concerning energy efficiency and environmental politics require novel approaches to materials design. One recent example is thereby the implementation of light-weight intermetallic titanium aluminides as structural materials for the application in turbine blades of aero-engines as well as in turbocharger turbine wheels for the next generation of automotive engines. Each production process leads to specific microstructures which can be altered and optimized by thermo-mechanical processing and / or subsequent heat-treatments. To develop sound and sustainable processing routes, knowledge on solidification processes and phase transformation sequences in advanced TiAl alloys is fundamental. Therefore, in-situ diffraction techniques employing synchrotron radiation and neutrons were used for establishing phase fraction diagrams, investigating advanced heat-treatments as well as for optimizing thermo-mechanical processing. Summarizing all results a consistent picture regarding microstructure formation and its impact on mechanical properties in advanced multi-phase TiAl alloys can be given.


2014 ◽  
Vol 783-786 ◽  
pp. 15-20 ◽  
Author(s):  
Helmut Clemens ◽  
Svea Mayer

After almost three decades of intensive fundamental research and development activities, intermetallic titanium aluminides based on the ordered γ-TiAl phase have found applications in aircraft and automotive engine industry. The advantages of this class of innovative high-temperature materials are their low density and their good strength and creep properties up to 750°C as well as their good oxidation and burn resistance. Advanced TiAl alloys are complex multi-phase alloys which can be processed by ingot or powder metallurgy as well as precision casting methods. Each process leads to specific microstructures which can be altered and optimized by thermo-mechanical processing and/or subsequent heat treatments. The background of these heat treatments is at least twofold, i.e. concurrent increase of ductility at room temperature and creep strength at elevated temperature.


2013 ◽  
Vol 1516 ◽  
pp. 3-16 ◽  
Author(s):  
Helmut Clemens ◽  
Martin Schloffer ◽  
Emanuel Schwaighofer ◽  
Robert Werner ◽  
Andrea Gaitzenauer ◽  
...  

ABSTRACTAfter almost three decades of intensive fundamental research and development activities intermetallic titanium aluminides based on the -TiAl phase have found applications in automotive and aircraft engine industries. The advantages of this class of innovative high-temperature materials are their low density as well as their good strength and creep properties up to 750°C. A drawback, however, is their limited ductility at room temperature, which is reflected by a low plastic strain at fracture. This behavior can be attributed to a limited dislocation movement along with microstructural inhomogeneity. Advanced TiAl alloys, such as β-solidifying TNM™ alloys, are complex multi-phase materials which can be processed by ingot or powder metallurgy as well as precision casting methods. Each production process leads to specific microstructures which can be altered and optimized by thermo-mechanical processing and/or subsequent heat-treatments. The background of these heat-treatments is at least twofold, i.e. concurrent increase of ductility at room temperature and creep strength at elevated temperature. In order to achieve this goal the knowledge of the occurring solidification processes and phase transformation sequences is essential. Therefore, thermodynamic calculations were conducted to predict phase fraction diagrams of engineering TiAl alloys. After experimental verification, these phase diagrams provided the base for the development of heat treatments to adjust balanced mechanical properties. To determine the influence of deformation and kinetic aspects, sophisticated ex- and in-situ methods have been employed to investigate the evolution of the microstructure during thermo-mechanical processing and subsequent multi-step heat-treatments. For example, in-situ high-energy X-ray diffraction was conducted to study dynamic recovery and recrystallization processes during hot-deformation tests. Summarizing all results a consistent picture regarding microstructure formation and its impact on mechanical properties in TNM alloys can be given.


1997 ◽  
Vol 119 (2) ◽  
pp. 292-301 ◽  
Author(s):  
K. Funazaki ◽  
M. Yokota ◽  
S. Yamawaki

Detailed studies are conducted on film effectiveness of discrete cooling holes around the leading edge of a blunt body that is subjected to periodically incoming wakes as well as free-stream turbulence with various levels of intensity. The cooling holes have a configuration similar to that of typical turbine blades except for the spanwise inclination angle. Secondary air is heated so that the temperature difference between the mainstream and secondary air is about 20 K. In this case, the air density ratio of the mainstream and secondary air becomes less than unity, therefore the flow condition encountered in an actual aero-engine cannot be simulated in terms of the density ratio. A spoke-wheel type wake generator is used in this study. In addition, three types of turbulence grids are used to elevate the free-stream turbulence intensity. We adopt three blowing ratios of the secondary air to the mainstream. For each of the blowing ratios, wall temperatures around the surface of the test model are measured by thermocouples situated inside the model. The temperature is visualized using liquid crystals in order to obtain qualitative information of film effectiveness distribution.


Author(s):  
K. Funazaki ◽  
M. Yokota ◽  
S. Yamawaki

Detailed studies are conducted on film effectiveness of discrete cooling holes around the leading edge of a blunt body that is subjected to periodically incoming wakes as well as free-stream turbulence with various levels of intensity. The cooling holes have a configuration similar to that of typical turbine blades except for the spanwise inclination angle. Secondary air is heated so that the temperature difference between the mainstream and secondary air is about 20K. In this case, air density ratio of the mainstream and secondary air becomes less than unity, therefore the flow condition encountered in an actual aero-engine can not be simulated in terms of the density ratio. A spoke-wheel type wake generator is used in this study. In addition, three types of turbulence grids are used to elevate the free-stream turbulence intensity. We adopt three blowing ratios of the secondary air to the mainstream. For each of the blowing ratios, wall temperature around the surface of the test model are measured by thermocouples situated inside the model. The temperature is visualized using liquid crystals in order to obtain qualitative information of film effectiveness distribution.


1950 ◽  
Vol 162 (1) ◽  
pp. 66-74 ◽  
Author(s):  
J. S. Turnbull

The paper describes a casting process which differs from standard foundry practice in that it uses a wax pattern in a high refractory one-piece mould to produce metal castings with a good surface finish to an accuracy of ±0·002 inch. The process involves making a master pattern in either hard wood or metal, relating it to a soft metal die by precision casting technique, and then the production of wax patterns from the die on an injection machine. Finally, the wax patterns are invested in refractory moulds, the wax is melted out, the mould baked, and the metal component is cast. The “lost wax” process is advantageous in cases where ( a) the metal is unmachinable, or ( b) where the component is of an unmachinable shape, or ( c) where production by other methods takes too long. One of the most common applications is in the manufacture of gas-turbine blades. The tool costs are relatively low compared to the costs involved in alternative methods of manufacture, the die cost being a function of the number of castings required. The production of cheap castings is necessarily dependent on the scrap percentage being kept to a minimum; at present the scrap from the manufacture of gas-turbine blades is less than 30 per cent, and the author surmises that it would not be unreasonable to expect it to be less than 10 per cent in two years' time.


2021 ◽  
Author(s):  
Liubov Magerramova ◽  
Boris Kozlov ◽  
Eugene Kratt

Abstract Traditionally, the technology used in the production of gas turbine blade castings characterized by a large number of technological conversions, high labor costs with a large amount of manual labor and the need to produce various types of complex and expensive equipment at different stages of production. This work aims to reduce the time and money spent on the manufacturing of ceramic shell shapes — a form suitable for the standard methods of precision casting by traditional heat-resistant nickel alloys. The proposed approached involves obtaining a shell shape with an internal core as a single, non-assembled product, without lengthy and time-consuming design and manufacturing processes involved in forming equipment for the production of castings based on smelted models. The proposed method is based on the use of 3D printing with refractory ceramic pastes. Using both uncooled and cooled blades as examples, models of casting molds were designed, technological processes were developed, and ceramic shell molds were manufactured. Experimental casting into a manufactured ceramic shell mold for an uncooled blade with a bandage shelf was performed and showed satisfactory results.


2019 ◽  
Vol 55 (13) ◽  
pp. 122
Author(s):  
FAN Yongsheng ◽  
HUANG Weiqing ◽  
YANG Xiaoguang ◽  
SHI Duoqi

Sign in / Sign up

Export Citation Format

Share Document