Oxidation Kinetics of ZrB2 Ceramic Matrix Composite Materials

2017 ◽  
Vol 900 ◽  
pp. 116-120
Author(s):  
Hong Yu ◽  
Qun Huang ◽  
Wei Wang ◽  
Long Tao Liu ◽  
Cai Wen Li ◽  
...  

Zirconium diboride is widely applied because of some excellent performances. The oxidation kinetics of ZrB2-YAG-Al2O3 composite materials were researched, which helps to improve the performance of ultra-high-temperature composite materials. The results show the oxidation weight gain is decreased with increasing the content of YAG-Al2O3 and the molar ratio of Al2O3. The oxidation weight gain is increased with prolonging the oxidation time under 1300°Cæ, the oxidation weight gain ratio is decreased with prolonging the oxidation time. The effecting tendency of oxidation weight gain is not abvious with varying the contend of YAG-Al2O3 upon 1300°Cæ, however, the effecting tendency of oxidation weight gain is very abvious with varying the molar ratio of Al2O3.

2021 ◽  
Author(s):  
George Karadimas ◽  
Konstantinos Salonitis ◽  
Konstantinos Georgarakis

The development of aircraft gas turbine engines has extensively been required for the development of advanced materials. This complex development process is however justified by the system-level benefits in terms of reduced weight, higher temperature capability, and/or reduced cooling, each of which increases efficiency. This is where high-temperature ceramics have made considerable progress and ceramic matrix composites (CMCs) are in the foreground. CMCs are classified into non-oxide and oxide-based ones. Both families have material types that have a high potential for use in high-temperature propulsion applications. Typical oxide-based ones are based on an oxide fiber and oxide matrix (Ox-Ox). Some of the most common oxide subcategories, are alumina, beryllia, ceria, and zirconia ceramics. Such matrix composites are used for example in combustion liners of gas turbine engines and exhaust nozzles. However, until now a thorough study on the available oxide-based CMCs for such applications has not been presented. This paper focus on assessing a literature survey of the available oxide ceramic matrix composite materials in terms of mechanical and thermal properties.


Author(s):  
V. Optasanu ◽  
M. C. Marco de Lucas ◽  
A. Kanjer ◽  
B. Vincent ◽  
T. Montesin ◽  
...  

2018 ◽  
Vol 499 ◽  
pp. 595-612 ◽  
Author(s):  
Yong Yan ◽  
Benton E. Garrison ◽  
Mike Howell ◽  
Gary L. Bell

Sign in / Sign up

Export Citation Format

Share Document