Experimental Study on the Structural Performance of Beam-Column Joints in Old Buildings without Designed Shear Reinforcement under Earthquake

2017 ◽  
Vol 902 ◽  
pp. 33-40
Author(s):  
Cong Thuat Dang ◽  
Ngoc Hieu Dinh

Old reinforced concrete buildings constructed around 1980’s in many developing countries have been designed against mainly gravity load. Beam-column joints in these buildings contain slightly or no shear reinforcement inside the panel zones due to the construction convenience, and are vulnerable to shear failure in beam-column joints under the action of earthquake loads, especially for the exterior beam-column joints. This experimental study aimed to investigate the seismic performance of five half-scale exterior beam-column joints simulating the joints in existing reinforced-concrete buildings with non-shear hoop details. The test results showed that the structural performances of the beam-column joints under earthquake including failure mode, load-drift ratio relationship, shear strain of the joints and energy dissipation are strongly affected by the amount of longitudinal reinforcing bars of beams.

2009 ◽  
Vol 15 (4) ◽  
pp. 395-403 ◽  
Author(s):  
Bjarne Christian Jensen ◽  
Andrzej Lapko

Modern design of reinforced concrete structural members for shear is based on the theory of plasticity. This paper is written to contribute to the understanding of the inclination of the concrete strut in the inclined strut model for design of shear reinforcement in beams, which among others are used in Eurocode 2. The problem of inclination of the compression strut in truss model is analysed depending on shear reinforcement ratio and effectiveness ratio of concrete strength for compression. Also the understanding of necessary ductility in steel reinforcing bars is discussed in the paper and especially the needs of tests on translation capacity of the shear failure are here analysed. To explain these problems the paper gives a short introduction to the theory of plasticity of reinforced concrete in shear and the background for the equations, which are used in shear design according to Eurocode 2. Santrauka Šiuolaikinis gelžbetonio elementų skersinės armatūros skaičiavimas pagrįstas plastiškumo teorijos principais. Straipsnyje pateikti sijų skersinės armatūros skaičiavimo ypatumai, taikant įstrižojo statramsčio modelį, kuris taikomas ir Eurokode 2. Išnagrinėtas gniuždomojo strypo pavertimas santvaros modelyje, atsižvelgiant į skersinės armatūros ir efektyvaus gniuždomojo betono stiprio santykį. Aptartas armatūrinio plieno strypų stamantrumas, akcentuota sijų laikomosios galios šlyčiai eksperimentinių tyrimų būtinybė. Pateiktas gelžbetoninių sijų šlyties skaičiavimas, taikant plastiškumo teorijos principus. Aptartas Eurokode 2 šlyties skaičiavimams taikomų priklausomybių teorinis pagrindas.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Chengzhi Wang ◽  
Xin Liu ◽  
Pengfei Li

The findings of an experimental study that was undertaken to investigate the performance of concrete-filled steel tubular members subjected to lateral loads are reported in this study. Columns of pure concrete, concrete with reinforcing bars, and two steel tube thicknesses were considered. Two different tests were conducted in this study. One test is used to research the performance of steel tube-reinforced concrete model piles under a lateral loading. The other test is used to research the effect of the depth of rock embedment for piles embedded in a foundation to simulate actual engineering applications in an experimental study. According to these test results, a detailed analysis was carried out on the relationships, such as the stress-strain and load-displacement relationships for the specimen. These tests show that the steel tube thickness and steel bars will significantly enhance the lateral bearing capacity and rigidity of the composite components. Additionally, the ultimate bending moment formula of a steel tube-reinforced concrete pile is deduced. The comparison of the calculated results with the experimental results shows that this formula is applicable for this type of pile foundation.


2008 ◽  
Vol 385-387 ◽  
pp. 865-868 ◽  
Author(s):  
Hyun Ki Choi ◽  
S.W. Beck ◽  
Y.S. Baik ◽  
Chang Sik Choi

The purpose of this research was to study the response of slab-column connections containing various types of shear reinforcement when subjected to the combination of gravitational and lateral cyclic loads. The three test specimens were full-scale representations of exterior slabcolumn connections of a prototype apartment building in Korea. The control specimen had no shear reinforcements, while the other specimens had CS-Bar and SS-Bar as shear reinforcements. The control specimen failed due to the punching shear around the slab-column connection at 4.0% drift. None of the specimens with shear reinforcement experienced punching shear failure up to 4.4% drift. The two types of slab shear reinforcements proved to be equally effective in resisting punching shear failure of these connections subjected to relatively low levels of gravity load. The presence of shear reinforcements significantly increased the lateral load ductility of the connections. The test results showed that the strength and ductility of the specimens with SS-Bar and CS-Bar were improved by 23% and 15% compared to the specimen without shear reinforcements.


Sign in / Sign up

Export Citation Format

Share Document