Electronic Properties of Cr and Mn Doped BN Nanowires

2018 ◽  
Vol 916 ◽  
pp. 69-73
Author(s):  
Sena Güler Özkapı ◽  
Barış Özkapı ◽  
Seyfettin Dalgıç

In this work, we have investigated electronic structures of pure and doped (with Cr and Mn atoms, separately) BN nanowires along [001] direction with zinc blende phase by means of density functional theory calculations. Our results show that the substitution doping of nanowires by Cr and Mn atoms decrases the band gaps of the all BN nanowires. Also, spin polarized calculations exhibit that the density of states (DOS) for spin up and spin down electrons are antisymmetric structure for both Cr and Mn doped BN nanowires. All these show that doped BN nanowire systems have potential applications in electronics and spintronics.

RSC Advances ◽  
2015 ◽  
Vol 5 (1) ◽  
pp. 760-769 ◽  
Author(s):  
Shuguang Zhang ◽  
Ning Han ◽  
Xiaoyao Tan

Spin-polarized DFT calculations were used to investigate the atomic, electronic structures of LaCoO3and La1−xSrxCoO3surfaces. The thermodynamic stability of these surfaces was analyzed with phase diagrams. Influence of Sr-doping was also examined.


2017 ◽  
Vol 19 (5) ◽  
pp. 3679-3687 ◽  
Author(s):  
Tao Yang ◽  
Masahiro Ehara

Using density functional theory calculations, we discussed the geometric and electronic structures and nucleation of small Co clusters on γ-Al2O3(100) and γ-Al2O3(110) surfaces.


2019 ◽  
Vol 21 (46) ◽  
pp. 25743-25748
Author(s):  
Yong-Chao Rao ◽  
Xiang-Mei Duan

The catalytic performance of Pd/Pt embedded planar carbon nitride for CO oxidation has been investigated via spin-polarized density functional theory calculations.


2016 ◽  
Vol 43 ◽  
pp. 23-28 ◽  
Author(s):  
Chun Ping Li ◽  
Ge Gao ◽  
Xin Chen

First-principle ultrasoft pseudo potential approach of the plane wave based on density functional theory (DFT) has been used for studying the electronic characterization and optical properties of ZnO and Fe, Co doped ZnO. The results show that the doping impurities change the lattice parameters a little, but bring more changes in the electronic structures. The band gaps are broadened by doping, and the Fermi level accesses to the conduction band which will lead the system to show the character of metallic properties. The dielectric function and absorption peaks are identified and the changes compared to pure ZnO are analyzed in detail.


Nanoscale ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 3780-3785 ◽  
Author(s):  
Ik Seon Kwon ◽  
In Hye Kwak ◽  
Hafiz Ghulam Abbas ◽  
Hee Won Seo ◽  
Jaemin Seo ◽  
...  

Mn-Porphyrin-MoS2 exhibits excellent electrocatalytic activity toward the hydrogen evolution reaction, which is supported by spin-polarized density functional theory calculations.


2019 ◽  
Vol 7 (14) ◽  
pp. 8101-8106 ◽  
Author(s):  
In Hye Kwak ◽  
Hafiz Ghulam Abbas ◽  
Ik Seon Kwon ◽  
Yun Chang Park ◽  
Jaemin Seo ◽  
...  

Cobaltocene-intercalated WS2 nanosheets exhibit excellent catalytic activity toward the hydrogen evolution reaction, which is supported by spin-polarized density functional theory calculations.


RSC Advances ◽  
2019 ◽  
Vol 9 (15) ◽  
pp. 8364-8368 ◽  
Author(s):  
Lanling Zhao ◽  
Jun Wang ◽  
Zhigang Gai ◽  
Jichao Li ◽  
Jian Liu ◽  
...  

Density functional theory calculations were conducted to investigate the electronic structures of rutile Ti16O32, Ti13Nb2InO32, and Ti13Nb2InO31 systems.


2017 ◽  
Vol 19 (29) ◽  
pp. 19478-19486 ◽  
Author(s):  
Caroline R. Kwawu ◽  
Richard Tia ◽  
Evans Adei ◽  
Nelson Y. Dzade ◽  
C. Richard A. Catlow ◽  
...  

We have used spin polarized density functional theory calculations to perform extensive mechanistic studies of CO2 dissociation into CO and O on the clean Fe(100), (110) and (111) surfaces and on the same surfaces coated by a monolayer of nickel.


2015 ◽  
Vol 3 (20) ◽  
pp. 10720-10723 ◽  
Author(s):  
Peng Li ◽  
Naoto Umezawa ◽  
Hideki Abe ◽  
Jinhua Ye

New vanadate photocatalysts, Ag2Sr(VO3)4 and Sr(VO3)2, are theoretically designed for water oxidation reactions. The calculations have shown that the new photocatalysts possess desirable electronic structures. Our experiments demonstrated that these vanadates efficiently oxidize water to O2 under irradiation of visible light.


Sign in / Sign up

Export Citation Format

Share Document