Two dimensional MoS2 meets porphyrins via intercalation to enhance the electrocatalytic activity toward hydrogen evolution

Nanoscale ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 3780-3785 ◽  
Author(s):  
Ik Seon Kwon ◽  
In Hye Kwak ◽  
Hafiz Ghulam Abbas ◽  
Hee Won Seo ◽  
Jaemin Seo ◽  
...  

Mn-Porphyrin-MoS2 exhibits excellent electrocatalytic activity toward the hydrogen evolution reaction, which is supported by spin-polarized density functional theory calculations.

2019 ◽  
Vol 7 (14) ◽  
pp. 8101-8106 ◽  
Author(s):  
In Hye Kwak ◽  
Hafiz Ghulam Abbas ◽  
Ik Seon Kwon ◽  
Yun Chang Park ◽  
Jaemin Seo ◽  
...  

Cobaltocene-intercalated WS2 nanosheets exhibit excellent catalytic activity toward the hydrogen evolution reaction, which is supported by spin-polarized density functional theory calculations.


Author(s):  
Jian Zeng ◽  
Liang Xu ◽  
Youwen Yang ◽  
Xin Luo ◽  
Hongju Li ◽  
...  

Very recently, a vital two-dimensional material MoSi2N4 is successfully synthesized experimentally. However, pure MoSi2N4 has some inherent shortcomings in photocatalytic water splitting to produce hydrogen. especially the low separation rate...


2019 ◽  
Vol 21 (46) ◽  
pp. 25743-25748
Author(s):  
Yong-Chao Rao ◽  
Xiang-Mei Duan

The catalytic performance of Pd/Pt embedded planar carbon nitride for CO oxidation has been investigated via spin-polarized density functional theory calculations.


2019 ◽  
Author(s):  
Qitang Fan ◽  
Daniel Martin-Jimenez ◽  
Daniel Ebeling ◽  
Claudio K. Krug ◽  
Lea Brechmann ◽  
...  

Various two-dimensional (2D) carbon allotropes with non-alternant topologies, such as pentaheptites and phagraphene, have been proposed. Predictions indicate that these metastable carbon polymorphs, which contain odd-numbered rings, possess unusual (opto)electronic properties. However, none of these materials has been achieved experimentally due to synthetic challenges. In this work, by using on-surface synthesis, nanoribbons of the non-alternant graphene allotropes, phagraphene and tetra-penta-hepta(TPH)-graphene have been obtained by dehydrogenative C-C coupling of 2,6-polyazulene chains. These chains were formed in a preceding reaction step via on-surface Ullmann coupling of 2,6-dibromoazulene. Low-temperature scanning probe microscopies with CO-functionalized tip and density functional theory calculations have been used to elucidate their structural properties. <br>


RSC Advances ◽  
2015 ◽  
Vol 5 (1) ◽  
pp. 760-769 ◽  
Author(s):  
Shuguang Zhang ◽  
Ning Han ◽  
Xiaoyao Tan

Spin-polarized DFT calculations were used to investigate the atomic, electronic structures of LaCoO3and La1−xSrxCoO3surfaces. The thermodynamic stability of these surfaces was analyzed with phase diagrams. Influence of Sr-doping was also examined.


Sign in / Sign up

Export Citation Format

Share Document