The Kinetics of Magnesium Carbonate Crystallization for Traditional Salt Production Wastewater Recovery

2019 ◽  
Vol 964 ◽  
pp. 136-144
Author(s):  
Mirna Apriani ◽  
Wahyono Hadi ◽  
Ali Masduqi

The kinetics of crystallization of magnesium carbonate (nesquehonite) at room temperature (27°C) has been examined using an electrical conductivity method during process of nucleation. Magnesium carbonate hydrate from a reaction of magnesium chloride (MgCl2) and sodium carbonate (Na2CO3) in supersaturated condition was analyzed. Variations of batch reactor experimental are magnesium chloride initial concentration (500-3.000 mg/L) and operating pH (8-14). In this paper, we studied the crystallization kinetics of magnesium carbonate via an electrical conductivity method, a concentration monitoring method. By monitoring electrical conductivity during the solution reaction process, changes in [Mg2+] can be measured and an induction period of nucleation could be determined. Crystal has been formed was confirmed with powder X-ray Diffractometer (XRD) analyses. The results show that magnesium carbonate is formed during operating condition pH 10 with magnesium chloride initial concentration 3.000 mg/L. The nucleation process of magnesium carbonate crystallization can be represented by second-order reaction equation with R2 is 0.8. The induction period of magnesium carbonate crystallization is 50 second.

1980 ◽  
Vol 45 (12) ◽  
pp. 3338-3346
Author(s):  
Miroslav Kašpar ◽  
Jiří Trekoval

The effect of small additions of 1-octene, butyl ethyl ether and triethylamine on the polymerization kinetics of isoprene (2-methyl-1,3-butadiene) in benzene initiated with butyllithium was investigated by employing the GLC analysis. The addition of 1-octane was reflected only in a shorter induction period of the reaction; the effect on the propagation rate was insignificant. With the increasing amount of butyl ethyl ether, the polymerization rate increases linearly, while the reaction order with respect to the concentration of triethylamine is variable and increases from 0.33 to 0.66 with the increasing concentration of the initiator. For a constant concentration of triethylamine, the reaction order with respect to the initial concentration of the initiator was found to vary considerably, reaching even negative values. A reaction scheme was suggested, taking into account the competition between two different solvates of alkyllithium.


1988 ◽  
Vol 18 (5) ◽  
pp. 595-600 ◽  
Author(s):  
P. M. Hallam ◽  
W. N. Tibbits

An electrical conductivity method for determining frost hardiness of tissue discs punched from Eucalyptus leaves is described. Samples were exposed to convective heat loss in an air-filled chamber. Rates of cooling and desired frost temperatures were electronically controlled and maintained. Supercooling of tissue was effectively eliminated by addition of small amounts of AgI and water. Conductivity of diffusate was measured as a means of quantifying tissue damage following frost. Relative conductivity was determined with reference to subsequent measurements following heating the discs to 70 °C which resulted in maximum conductivity. Exposure of leaf discs to temperatures below the lethal temperature for these species (<−10 °C) resulted in similar maximum conductivity readings. The technique is evaluated to assess its potential to distinguish small differences in frost hardiness caused by genotype and environment. For both E. delegatensis and E. nitens there was no significant difference in frost hardiness expressed in terms of mean lethal temperature when comparing leaf discs with frosting whole seedlings.


1968 ◽  
Vol 25 (7) ◽  
pp. 402-404
Author(s):  
K. T. Bondarev ◽  
N. P. Grimal'skii ◽  
G. E. Knigin ◽  
E. S. Gnedashevskaya

Sign in / Sign up

Export Citation Format

Share Document