Microstructural and Mechanical Characterization of As-Cast Co-Cr-Mo Alloys with Various Content of Carbon and Nitrogen

2020 ◽  
Vol 988 ◽  
pp. 206-211
Author(s):  
Alfirano ◽  
Purwaningtyas Agustini ◽  
Sumirat Iwan

Co-Cr-Mo alloys is the material used as a biomedical implant in human body. This material is widely used because they have excellent in corrosion and wear resistance. In this study, microstructure and results of tensile test that were affected by carbon and nitrogen were investigated. The specimens of Co-Cr-Mo alloy were made by investment casting. The compositions of the alloys are Co-28Cr-6Mo-0.8(Si, Mn, Fe)-0,2Ni-(0.08-0.25)C-(0-0.2)N. After that process, microstructure of the alloys is characterized by, SEM/EDX and XRD testing using bulk and electrolytic extracted specimens. The mechanical properties were determined by tensile test. The precipitate content in as-cast alloys was higher when carbon and nitrogen was added. The main precipitate formed in the specimens with variations in carbon and nitrogen is M23X6 type, π-phase, χ-phase, and σ-phase. Carbon and nitrogen promoted M23X6 type and π-phase precipitation, respectively, meanwhile χ-phase was formed in the alloys with low carbon content. The addition of carbon and nitrogen shows an increased in yield strength, tensile strength and elongation of as-cast Co-28Cr-6Mo-0.8(Si, Mn, Fe)-0,2Ni-(0.08-0.25)C-(0-0.2)N alloys.

2018 ◽  
Vol 11 (79) ◽  
pp. 3901-3910
Author(s):  
Milton F. Coba Salcedo ◽  
Carlos Acevedo Penaloza ◽  
Gustavo Guerrero Gomez

Author(s):  
Véronique Laterreur ◽  
Jean Ruel ◽  
François A. Auger ◽  
Karine Vallières ◽  
Catherine Tremblay ◽  
...  

Author(s):  
Pavel Michel Zaldivar-Almaguer ◽  
Roberto Andrés Estrada-Cingualbres ◽  
Roberto Pérez-Rodríguez ◽  
Arturo Molina-Gutiérrez

The mechanical characterization of the engineering materials is always a topic of interest to engineers and researchers. The objective of this work is to study the butt welded joint resilience and toughness by means of the tensile test and the numerical simulation. The specimens were fabricated by welding two plates of AISI 1015 steel with an E6013 electrode. An algorithm of the numerical integration based on the trapezoid method that allowed calculating the resilience and toughness as the area under the stress - strain curve was implemented. The algorithm was validated by comparing the numerical results of the resilience with those obtained by the analytical method. The results show that the resilience and the toughness values computed with the experimental stress - strain curve, they have correspondence with the same values calculated with the numerical simulation.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 810
Author(s):  
Elena Scutelnicu ◽  
Mihaela Iordachescu ◽  
Carmen Catalina Rusu ◽  
Danut Mihailescu ◽  
José Luis Ocaña

This paper addresses the metallurgical and mechanical characterization of dissimilar joints made by laser autogenous welding between thin sheets of low-carbon steel (CS) and austenitic stainless steel (SS). The welding technology applied, previously optimized to produce sound dissimilar joints, is based on the heat source displacement from the weld gap centerline towards CS, in order to reduce the SS overheating. The research includes optical microscopy observations, energy dispersive X-ray analysis (EDX) to assess the wt% of Cr, Ni, and Fe in all regions of the dissimilar welded joint, hardness measurements, and tensile tests of transverse-welded flat specimens. In comparison with classical determination of the joint overall mechanical characteristics, the novelty of this research consists of experimental assessment of the local mechanical behavior of the fusion and heat affected zones by using a digital image correlation technique (VIC-2D). This is an efficient tool for determining the constitutive properties of the joint, useful for modelling the mechanical behavior of materials and for verifying the engineering predictions. The results show that the positive difference in yielding between the weld metal and the base materials protects the joint from being plastically deformed. As a consequence, the tensile loading of flat transverse specimens generates the strain localization and failure in CS, far away from the weld.


Sign in / Sign up

Export Citation Format

Share Document