High Precision Mass Measurement in Automation

2010 ◽  
Vol 164 ◽  
pp. 19-24
Author(s):  
Tatjana Ivanova ◽  
Janis Rudzitis

High-precision mass measurement equipment is required in some areas of science and technology. Physics, chemistry, pharmaceutics and high precision mechanics are common examples. In metrology, high-precision scales are used for verification and calibration of lower precision mass measurement equipment (weights and scales). Mass comparators are the most accurate mass measurement instruments available today. It is a special type of electronic scales designed to compare mass of two weights. They can be automatic or manual, with various measurement ranges and accuracy classes. This article discusses principles of operation of mass comparators and practice of high-precision mass measurement. There are special computer programs that can be used in conjunction with these instruments, which may significantly improve measurement accuracy (when mass comparator is controlled remotely) as well as simplify calculations and reporting procedures. This article describes one of these programs – ScalesNet32 – which can be used with mass comparators produced by Sartorius (Germany).

2020 ◽  
Vol 241 (1) ◽  
Author(s):  
Matthew B. Smith ◽  
Tobias Murböck ◽  
Eleanor Dunling ◽  
Andrew Jacobs ◽  
Brian Kootte ◽  
...  

2002 ◽  
Vol 701 (1-4) ◽  
pp. 184-187 ◽  
Author(s):  
C. Toader ◽  
C. Monsanglant ◽  
G. Audi ◽  
G. Conreur ◽  
H. Doubre ◽  
...  

2010 ◽  
Vol 82 (5) ◽  
Author(s):  
A. Kankainen ◽  
T. Eronen ◽  
D. Gorelov ◽  
J. Hakala ◽  
A. Jokinen ◽  
...  

2020 ◽  
Vol 458 ◽  
pp. 116435
Author(s):  
D.A. Nesterenko ◽  
R.P. de Groote ◽  
T. Eronen ◽  
Z. Ge ◽  
M. Hukkanen ◽  
...  

2018 ◽  
Vol 120 (3) ◽  
Author(s):  
A. A. Valverde ◽  
M. Brodeur ◽  
G. Bollen ◽  
M. Eibach ◽  
K. Gulyuz ◽  
...  

Author(s):  
E.A. Derkach , O.I. Guseva

Objectives: to compare the accuracy of equations F.P. Hadlock and computer programs by V.N. Demidov in determining gestational age and fetal weight in the third trimester of gestation. Materials: 328 patients in terms 36–42 weeks of gestation are examined. Ultrasonography was performed in 0–5 days prior to childbirth. Results: it is established that the average mistake in determination of term of pregnancy when using the equation of F.P. Hadlock made 12,5 days, the computer program of V.N. Demidov – 4,4 days (distinction 2,8 times). The mistake within 4 days, when using the equation of F.P. Hadlock has met on average in 23,1 % of observations, the computer program of V.N. Demidov — 65,9 % (difference in 2,9 times). The mistake more than 10 days, took place respectively in 51,7 and 8,2 % (distinction by 6,3 times). At a comparative assessment of size of a mistake in determination of fetal mass it is established that when using the equation of F.P. Hadlock it has averaged 281,0 g, at application of the computer program of V.N. Demidov — 182,5 g (distinction of 54 %). The small mistake in the mass of a fetus which isn't exceeding 200 g at application of the equation of F.P. Hadlock has met in 48,1 % of cases and the computer program of V.N. Demidov — 64,0 % (distinction of 33,1 %). The mistake exceeding 500 g has been stated in 18 % (F.P. Hadlock) and 4,3 % (V.N. Demidov) respectively (distinction 4,2 times). Conclusions: the computer program of V.N. Demidov has high precision in determination of term of a gestation and mass of a fetus in the III pregnancy.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Yuta Teruyama ◽  
Takashi Watanabe

The wearable sensor system developed by our group, which measured lower limb angles using Kalman-filtering-based method, was suggested to be useful in evaluation of gait function for rehabilitation support. However, it was expected to reduce variations of measurement errors. In this paper, a variable-Kalman-gain method based on angle error that was calculated from acceleration signals was proposed to improve measurement accuracy. The proposed method was tested comparing to fixed-gain Kalman filter and a variable-Kalman-gain method that was based on acceleration magnitude used in previous studies. First, in angle measurement in treadmill walking, the proposed method measured lower limb angles with the highest measurement accuracy and improved significantly foot inclination angle measurement, while it improved slightly shank and thigh inclination angles. The variable-gain method based on acceleration magnitude was not effective for our Kalman filter system. Then, in angle measurement of a rigid body model, it was shown that the proposed method had measurement accuracy similar to or higher than results seen in other studies that used markers of camera-based motion measurement system fixing on a rigid plate together with a sensor or on the sensor directly. The proposed method was found to be effective in angle measurement with inertial sensors.


Sign in / Sign up

Export Citation Format

Share Document