Effect of some Sulphur Additives on the Degradation of 9Cr-1Mo Steel after its 10 Years Service in the CCR Platforming Unit

2014 ◽  
Vol 225 ◽  
pp. 139-144
Author(s):  
Jan Dampc ◽  
Marek Szkodo

The work shows the results of the tests of 9Cr-1Mo steel, which was for 10 years operated in the CCR platforming unit in Group Lotos SA in Gdańsk, and then in the laboratory was sulphidised during 166 h at a temperature of 600 °C. Sulphidation was performed in a mixture of H2-H2S gases at the vapour pressure of sulphur 4.1·10-14 atm, so the order of magnitude of vapour pressure was less than that of the dissociation pressure of FeS. Although sulphidising took place in conditions which preclude any iron sulphide formation, research results have demonstrated that after 166 hour exposure in reaction mixture in 9Cr-1Mo steel produces iron and chromium sulfides. Sulphide precipitates form under a layer of fine carbides, located directly on the surface of steel. Formation of scale sulphide here is most likely caused by the penetration of hydrogen sulphide through the porous layer of carbides that increases the pressure of hydrogen sulphide. Thus the vapour of sulphur in apertures and narrow passages occurs between the layer of carbides and the rest of oversaturated carbon layer top, until its pressure value is reached allowing the formation of sulphide scaling.

The vapour pressure of hydrogen sulphide has been measured over the temperature range 108 to 220° K, the pressure being between 0.005 and 110 cm. of mercury. The results are compared, where possible, with previous measurements, and are used to calculate latent heats which are compared with calorimetric data. The results indicate the occurrence of a second-order transition of the solid phase at a temperature of 127.8° K.


2014 ◽  
Vol 14 (23) ◽  
pp. 13189-13204 ◽  
Author(s):  
F. Wania ◽  
Y. D. Lei ◽  
C. Wang ◽  
J. P. D. Abbatt ◽  
K.-U. Goss

Abstract. Several methods have been presented in the literature to predict an organic chemical's equilibrium partitioning between the water insoluble organic matter (WIOM) component of aerosol and the gas phase, Ki,WIOM, as a function of temperature. They include (i) polyparameter linear free energy relationships calibrated with empirical aerosol sorption data, as well as (ii) the solvation models implemented in SPARC and (iii) the quantum-chemical software COSMOtherm, which predict solvation equilibria from molecular structure alone. We demonstrate that these methods can be used to predict Ki,WIOM for large numbers of individual molecules implicated in secondary organic aerosol (SOA) formation, including those with multiple functional groups. Although very different in their theoretical foundations, these methods give remarkably consistent results for the products of the reaction of normal alkanes with OH, i.e. their partition coefficients Ki,WIOM generally agree within one order of magnitude over a range of more than ten orders of magnitude. This level of agreement is much better than that achieved by different vapour pressure estimation methods that are more commonly used in the SOA community. Also, in contrast to the agreement between vapour pressure estimates, the agreement between the Ki,WIOM estimates does not deteriorate with increasing number of functional groups. Furthermore, these partitioning coefficients Ki,WIOM predicted SOA mass yields in agreement with those measured in chamber experiments of the oxidation of normal alkanes. If a Ki,WIOM prediction method was based on one or more surrogate molecules representing the solvation properties of the mixed OM phase of SOA, the choice of those molecule(s) was found to have a relatively minor effect on the predicted Ki,WIOM, as long as the molecule(s) are not very polar. This suggests that a single surrogate molecule, such as 1-octanol or a hypothetical SOA structure proposed by Kalberer et al. (2004), may often be sufficient to represent the WIOM component of the SOA phase, greatly simplifying the prediction. The presented methods could substitute for vapour-pressure-based methods in studies such as the explicit modelling of SOA formation from single precursor molecules in chamber experiments.


1995 ◽  
Vol 293 ◽  
pp. 1-23 ◽  
Author(s):  
Shaun D. Fitzgerald ◽  
Andrew W. Woods

The motion of isothermal vapour in a permeable rock is governed by a nonlinear diffusion equation for the vapour pressure. We analyse vapour flow described by this equation in both bounded and unbounded domains. We then apply these solutions to describe the controls on the rate of vaporization of liquid invading a hot permeable rock. In an unbounded domain, we determine asymptotic similarity solutions describing the motion of vapour when it is either supplied to or removed from the reservoir. Owing to the compressibility, these solutions have the property that vapour surfaces migrate towards the isobar on which the vapour has the maximum speed.In contrast, if vapour is supplied to or removed from a closed bounded system sufficiently slowly then the vapour density and pressure rapidly become approximately uniform. As more vapour is added, the mean pressure gradually increases and vapour surfaces become compressed. If liquid slowly invades a hot bounded porous layer and vaporizes, the vapour pressure becomes nearly uniform. As more liquid is added, the reservoir gradually becomes vapour saturated and the vaporization ceases.In an open bounded system, with a constant rate of vapour injection, the flux of vapour across the reservoir becomes uniform. If liquid is injected slowly and vaporizes then again the vapour flux becomes spatially uniform. However, the vapour flux now increases slowly as the liquid invades further into the rock, as a result of the decreased resistance to vapour flow from the interface to the far boundary.


Author(s):  
I. Brent Heath

Detailed ultrastructural analysis of fungal mitotic systems and cytoplasmic microtubules might be expected to contribute to a number of areas of general interest in addition to the direct application to the organisms of study. These areas include possibly fundamental general mechanisms of mitosis; evolution of mitosis; phylogeny of organisms; mechanisms of organelle motility and positioning; characterization of cellular aspects of microtubule properties and polymerization control features. This communication is intended to outline our current research results relating to selected parts of the above questions.Mitosis in the oomycetes Saprolegnia and Thraustotheca has been described previously. These papers described simple kinetochores and showed that the kineto- chores could probably be used as markers for the poorly defined chromosomes. Kineto- chore counts from serially sectioned prophase mitotic nuclei show that kinetochore replication precedes centriole replication to yield a single hemispherical array containing approximately the 4 n number of kinetochore microtubules diverging from the centriole associated "pocket" region of the nuclear envelope (Fig. 1).


Author(s):  
W. J. Abramson ◽  
H. W. Estry ◽  
L. F. Allard

LaB6 emitters are becoming increasingly popular as direct replacements for tungsten filaments in the electron guns of modern electron-beam instruments. These emitters offer order of magnitude increases in beam brightness, and, with appropriate care in operation, a corresponding increase in source lifetime. They are, however, an order of magnitude more expensive, and may be easily damaged (by improper vacuum conditions and thermal shock) during saturation/desaturation operations. These operations typically require several minutes of an operator's attention, which becomes tedious and subject to error, particularly since the emitter must be cooled during sample exchanges to minimize damage from random vacuum excursions. We have designed a control system for LaBg emitters which relieves the operator of the necessity for manually controlling the emitter power, minimizes the danger of accidental improper operation, and makes the use of these emitters routine on multi-user instruments.Figure 1 is a block schematic of the main components of the control system, and Figure 2 shows the control box.


Sign in / Sign up

Export Citation Format

Share Document