Evaluation of Fatigue Failure of S960QL Steel in the Conditions of Plastic Strain

2016 ◽  
Vol 250 ◽  
pp. 175-181 ◽  
Author(s):  
Tomasz Slezak ◽  
Lucjan Sniezek ◽  
Janusz Torzewski ◽  
Volodymyr Hutsaylyuk

The article presents the results of research on low cycle fatigue strength of high-strength structural steel S960QL. During the tests, controlled force was applied using the different total strain amplitude εac and strain ratio Rε = 0.1. The obtained results allowed to determine the value of the cyclic strain hardening exponent n' and the cyclic strength coefficient K' and to draw the cyclic stress-strain curve. Analysis was also carried out of fatigue life based on the Manson-Coffin-Basquin equation. Fatigue values were also determined. Fractographic tests of fatigue fractures allowed to identify the causes of crack initiation and the course of their propagation.

2014 ◽  
Vol 664 ◽  
pp. 28-33
Author(s):  
Ying Lan ◽  
Li Jia Chen ◽  
Xin Che ◽  
Feng Li

The low-cycle fatigue behaviors of as-extruded and T6 treated Al-6Zn-2.5Mg-2Cu-0.1Zr-0.1Sc alloys at room temperature have been investigated under those total-strain amplitudes ranged from 0.3% to 1.0%, and the influence of T6 treatment on the low-cycle fatigue properties of Al-6Zn-2.5Mg-2Cu-0.1Zr-0.1Sc alloy was clarified. The experimental results show that during fatigue deformation, the significant cyclic strain hardening and stable cyclic stress response can be noted for both as-extruded and T6 treated Al-6Zn-2.5Mg-2Cu-0.1Zr-0.1Sc alloys. The fatigue life of as-extruded Al-6Zn-2.5Mg-2Cu-0.1Zr-0.1Sc alloy at all strain amplitudes is longer than that of the alloy subjected to T6 aging treatment. The relationship between both elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior, and can be described by the Basquin and Coffin-Manson equations, respectively. The T6 treatment can significantly increase the cyclic strain hardening exponent and cyclic strength coefficient of extruded Al-6Zn-2.5Mg-2Cu-0.1Zr-0.1Sc alloy.


1984 ◽  
Vol 106 (4) ◽  
pp. 336-341
Author(s):  
R. Winter

An experimental and theoretical study was performed of the nonlinear behavior of a simply supported flat circular aluminum plate under reversed cyclic central load. The application is for the analysis of cyclic stress and strain of structural components in the plastic range for predicting low-cycle fatigue life. The main purpose was to determine the relative accuracy of an elastic-plastic large deformation finite element analysis when the material properties input data are derived from monotonic (noncyclic) stress-strain curves versus that derived from cyclic stress-strain curves. The results showed that large errors could be induced in the theoretical prediction of cyclic strain range when using the monotonic stress-strain curve, which could lead to large errors in predicting low-cycle fatigue life. The use of cyclic stress-strain curves, according to the model developed by Morrow, et al., proved to be accurate and convenient.


2010 ◽  
Vol 146-147 ◽  
pp. 1379-1385
Author(s):  
Yang Gao ◽  
Chang Jun Yang ◽  
Kai Lin ◽  
Qing Gao

Cyclic stress-strain curve and cyclic strain-life curve appear distinct scatters, and the scatter of fatigue life increases with reducing of the strain levels. A methodology for reliability simulation of low cycle fatigue (LCF) life for turbine disk structures is developed in this paper. First, probabilistic cyclic stress-strain model and linear heteroscedastic probabilistic cyclic strain-life model are founded based on the fatigue test data. Second, three dimensional model of a turbine disk is built, and the fatigue reliability analysis of this turbine disk is implemented in probabilistic design module (PDS) of ANSYS by the combination of response surface method (RSM) and Monte Carlo simulation (MCS). The predicted life with reliability 0.9987 is well consistent with the technology life obtained from disks LCF tests by scatter factors method.


Author(s):  
R. Ghajar ◽  
J. Alizadeh K. ◽  
N. Naserifar

The objective of this paper is to demonstrate the applicability of artificial neural networks on estimation of the cyclic strain hardening exponent and cyclic strength coefficient of steels on the basis of monotonic tensile tests properties. In order to demonstrate this applicability, steels tensile data was extracted from the literatures and two separate neural networks was conducted. One set of data was used for training networks and remaining of data for testing them. The regression analysis was used to check the system accuracy for training and test data at the end of learning. Comparing results of neural networks with values obtained from direct fitting of experimental data was indicated that cyclic strain hardening exponent and cyclic strength coefficient, which characterize the stable curves of true stress amplitude versus true plastic strain amplitude, were predicted reasonable. It was concluded that predicted stable cyclic true stress-strain curve properties by trained neural network are more accurate compared to approximate relations based on low-cycle fatigue properties.


2011 ◽  
Vol 399-401 ◽  
pp. 1937-1941 ◽  
Author(s):  
Wen Yong Xu ◽  
Guo Qing Zhang ◽  
Zhou Li

Low cycle fatigue behavior of spray formed superalloy GH738 at 650°C has been investigated under fully reversed total strain-controlled mode. When strain amplitude (Δεt/2) is between 0.32% and 0.4%, cyclic stress response is stable under fully reversed constant total strain amplitude. The stabilized hysteresis loops narrowing sharply to a straight line indicates that the alloy exhibits typical elastic strain. The crack initiates single site from the surface. When strain amplitude is between 0.6% and 1.0%, cyclic hardening is observed until fracture. The tendency for hardening is found to increase with strain amplitude. The hyperesis loops expand gradually, which indicates that plastic deformation happens during cyclic deformation process. The crack initiates multi-sites from the surface. The cyclic strain-stress relationship of spray formed GH738 at 650°C can be illustrated by Δσ/2 =2017(Δεp/2)0.1489.The total strain-life function can expressed by Δεt/2=0.0071(2Nf)-0.0781+0.0647(2Nf) )-0.4914.


2011 ◽  
Vol 399-401 ◽  
pp. 148-151
Author(s):  
Min Li Wang ◽  
Zhi Wang Zheng ◽  
Li Xiao

Hot rolled 260MPa grade high strength Nb-IF steel sheet was used to study the effect of coiling temperature and cold reduction ratio on the microstructures and mechanical properties. The experimental results showed that the recrystallization has finished. Under 650°Ccoiling temperature and 75% cold reduction ratio, and under 600°C or 700°C coiling temperature and 65% cold reduction ratio, the plastic strain ratio r value and the strain hardening exponent n value were reached the maximum, and respectively, the r value was approximate 1.8, the n value was approximate 0.26. That obtains optimally match of high strength and punching property.


1993 ◽  
Vol 28 (2) ◽  
pp. 125-133 ◽  
Author(s):  
A Navarro ◽  
M W Brown ◽  
K J Miller

A simplified treatment is presented for the analysis of tubular specimens subject to in-phase tension-torsion loads in the elasto-plastic regime. Use is made of a hardening function readily obtainable from the uniaxial cyclic stress-strain curve and hysteresis loops. Expressions are given for incremental as well as deformation theories of plasticity. The reversals of loading are modelled by referring the flow equations to the point of reversal and calculating distances from the point of reversal using a yield critertion. The method has been used to predict the deformation response of in-phase tests on an En15R steel, and comparisons with experimental data are provided. The material exhibited a non-Masing type behaviour. A power law rule is developed for predicting multiaxial cyclic response from uniaxial data by incorporating a hysteretic strain hardening exponent.


2018 ◽  
Vol 157 ◽  
pp. 05013 ◽  
Author(s):  
Peter Kopas ◽  
Milan Sága ◽  
František Nový ◽  
Bohuš Leitner

The article presents the results of research on low cycle fatigue strength of laser welded joints vs. non-welded material of high-strength steel DOMEX 700 MC. The tests were performed under load controlled using the total strain amplitude ɛac. The operating principle of the special electro-mechanic fatigue testing equipment with a suitable clamping system was working on 35 Hz frequency. Fatigue life analysis was conducted based on the Manson-Coffin-Basquin equation, which made it possible to determine fatigue parameters. Studies have shown differences in the fatigue life of original specimens and laser welded joints analysed, where laser welded joints showed lower fatigue resistance. In this article a numerical analysis of stresses generated in bending fatigue specimens has been performed employing the commercially available FEM-program ADINA.


Author(s):  
Jorge E. Egger ◽  
Fabian R. Rojas ◽  
Leonardo M. Massone

AbstractLow cycle fatigue life of high-strength reinforcing steel bars (ASTM A706 Grade 80), using photogrammetry by RGB methodology is evaluated. Fatigue tests are performed on specimens under constant axial displacement with total strain amplitudes ranging from 0.01 to 0.05. The experimental observations indicate that buckling of high-strength reinforcing bars results in a damaging degradation of their fatigue life performance as the slenderness ratio increases, including an early rebar failure as the total strain amplitude increases since it achieves the plastic range faster. In addition to this, the results show that the ratio of the ultimate tensile strength to yield strength satisfies the minimum of 1.25 specified in ASTM A706 for reinforcement. On the other hand, the RGB methodology indicates that the axial strains measured by photogrammetry provide more accurate data since the registered results by the traditional experimental setup do not detect second-order effects, such as slippage or lengthening of the specimens within the clamps. Moreover, the RGB filter is faster than digital image correlation (DIC) because the RGB methodology requires a fewer computational cost than DIC algorithms. The RGB methodology allows to reduce the total strain amplitude up to 45% compared to the results obtained by the traditional setup. Finally, models relating total strain amplitude with half-cycles to failure and total strain amplitude with total energy dissipated for multiple slenderness ratios (L/d of 5, 10, and 15) are obtained.


Sign in / Sign up

Export Citation Format

Share Document