Comparative Analysis of the Sulfate-Reducing Performance and Microbial Colonisation of Three Continuous Reactor Configurations with Varying Degrees of Biomass Retention

2017 ◽  
Vol 262 ◽  
pp. 638-642
Author(s):  
Tomas Hessler ◽  
Tynan Marais ◽  
Robert J. Huddy ◽  
Robert van Hille ◽  
Susan T.L. Harrison

Biological sulfate reduction represents an alternative and sustainable option to reduce the high sulfate load, precipitate heavy metals and neutralise the acidity associated with acid rock drainage (ARD). Sulfate-reducing enrichment cultures have been developed on simple and complex electron donors from several environmental samples and used to inoculate three reactor configurations, namely a continuous stirred tank bioreactor, up-flow anaerobic packed bed reactor and a linear flow channel reactor, with varying degrees of biomass retention provided by carbon microfibres and polyurethane foam. These matrices are included to enhance microbial attachment and colonisation, allowing for the decoupling of hydraulic retention time and biomass retention time. The bioreactor systems are operated under increasingly stringent conditions through the reduction in the hydraulic residence time. The biological sulfate reduction performance and the biomass concentration of planktonic, matrix-attached and matrix-associated communities are routinely monitored. This investigation makes use of biomass quantification of the planktonic community and, following detachment, the matrix-associated community to investigate the resultant microbial communities in these reactor systems. Evaluation of these mixed microbial communities, and their link to process performance, provides an opportunity to impact the design and operation of pilot- and industrial-scale bioprocesses.

2013 ◽  
Vol 67 (2) ◽  
pp. 311-318 ◽  
Author(s):  
Madawala Liyanage Duminda Jayaranjan ◽  
Ajit P. Annachhatre

Investigations were undertaken to utilize flue gas desulfurization (FGD) gypsum for the treatment of leachate from the coal ash (CA) dump sites. Bench-scale investigations consisted of three main steps namely hydrogen sulfide (H2S) production by sulfate reducing bacteria (SRB) using sulfate from solubilized FGD gypsum as the electron acceptor, followed by leaching of heavy metals (HMs) from coal bottom ash (CBA) and subsequent precipitation of HMs using biologically produced sulfide. Leaching tests of CBA carried out at acidic pH revealed the existence of several HMs such as Cd, Cr, Hg, Pb, Mn, Cu, Ni and Zn. Molasses was used as the electron donor for the biological sulfate reduction (BSR) process which produced sulfide rich effluent with concentration up to 150 mg/L. Sulfide rich effluent from the sulfate reduction process was used to precipitate HMs as metal sulfides from CBA leachate. HM removal in the range from 40 to 100% was obtained through sulfide precipitation.


1995 ◽  
Vol 31 (9) ◽  
pp. 101-107 ◽  
Author(s):  
Chongchin Polprasert ◽  
Charles N. Haas

Anaerobic reactors were operated in a semi-batch mode and fed with the dual substrates glucose (G) plus acetic acid (Ac) as primary organic sources to study the effect of sulfate on COD oxidation. With glucose, COD removal by methane formation was seriously inhibited, resulting in COD accumulation in the reactor. Although acetic acid can be consumed by some sulfate-reducing species, it was not a major substrate for sulfate reduction, but was largely responsible for methane formation in the anaerobic mixed culture used in this study. With dual substrates, extreme inhibition of methanogenesis did not occur as did with glucose alone. Instead, methanogens were found to work in harmony with acid formers as well as sulfate reducers to oxidise COD. Interestingly, from 12-hour monitoring, increased G/Ac COD ratios decreased COD removal rates as well as biogas production, but resulted in higher sulfate reduction. This suggests that there should be an optimal feed G/Ac COD ratio, for which removal of both organics could be maximised.


1997 ◽  
Vol 35 (5) ◽  
pp. 293-299 ◽  
Author(s):  
Wendy R. Tyrrell ◽  
David R. Mulligan ◽  
Lindsay I. Sly ◽  
L. Clive Bell

The large number of wetlands treating mining wastewaters around the world have mostly been constructed in temperate environments. Wetlands have yet to be proven in low rainfall, high evaporation environments and such conditions are common in many parts of Australia. BHP Australia Coal is researching whether wetlands have potential in central Queensland to treat coal mining wastewaters. In this region, mean annual rainfall is < 650 mm and evaporation > 2 000 mm. A pilot-scale wetland system has been constructed at an open-cut coal mine. The system comprises six treatment cells, each 125 m long and 10 m wide. The system is described in the paper and some initial results presented. Results over the first fourteen months of operation have shown that although pH has not increased enough to enable reuse or release of the water, sulfate reduction has been observed in parts of the system, as shown by the characteristic black precipitate and smell of hydrogen sulfide emanating from the wetlands. These encouraging signs have led to experiments aimed at identifying the factors limiting sulfate reduction. The first experiment, described herein, included four treatments where straw was overlain by soil and the water level varied, being either at the top of the straw, at the top of the soil, or about 5 cm above the soil. The effect of inoculating with sulfate-reducing bacteria was investigated. Two controls were included, one covered and one open, to enable the effect of evaporation to be determined. The final treatment consisted of combined straw/cattle manure overlain with soil. Results showed that sulfate reduction did occur, as demonstrated by pH increases and lowering of sulfate levels. Mean pH of the water was significantly higher after 19 days; in the controls, pH was < 3.3, whereas in the treatments, pH ranged from 5.4 to 6.7. The best improvement in sulfate levels occurred in the straw/cattle manure treatment.


2021 ◽  
Vol 9 (2) ◽  
pp. 429
Author(s):  
Rikuan Zheng ◽  
Shimei Wu ◽  
Chaomin Sun

Sulfur cycling is primarily driven by sulfate reduction mediated by sulfate-reducing bacteria (SRB) in marine sediments. The dissimilatory sulfate reduction drives the production of enormous quantities of reduced sulfide and thereby the formation of highly insoluble metal sulfides in marine sediments. Here, a novel sulfate-reducing bacterium designated Pseudodesulfovibrio cashew SRB007 was isolated and purified from the deep-sea cold seep and proposed to represent a novel species in the genus of Pseudodesulfovibrio. A detailed description of the phenotypic traits, phylogenetic status and central metabolisms of strain SRB007 allowed the reconstruction of the metabolic potential and lifestyle of a novel member of deep-sea SRB. Notably, P. cashew SRB007 showed a strong ability to resist and remove different heavy metal ions including Co2+, Ni2+, Cd2+ and Hg2+. The dissimilatory sulfate reduction was demonstrated to contribute to the prominent removal capability of P. cashew SRB007 against different heavy metals via the formation of insoluble metal sulfides.


2020 ◽  
Vol 155 ◽  
pp. 106408 ◽  
Author(s):  
Marja Salo ◽  
Oleg Knauf ◽  
Jarno Mäkinen ◽  
Xiaosheng Yang ◽  
Pertti Koukkari

1999 ◽  
Vol 39 (7) ◽  
pp. 41-47 ◽  
Author(s):  
Satoshi Okabe ◽  
Hisashi Satoh ◽  
Tsukasa Itoh ◽  
Yoshimasa Watanabe

The vertical distribution of sulfate-reducing bacteria (SRB) in microaerophilic wastewater biofilms grown on fully submerged rotating disk reactors (RDR) was determined by the conventional culture-dependent MPN method and in situ hybridization of fluorescently-labelled 16S rRNA-targeted oligonucleotide probes for SRB in parallel. Chemical concentration profiles within the biofilm were also measured using microelectrodes for O2, S2-, NO3- and pH. In situ hybridization revealed that the SRB probe-stained cells were distributed throughout the biofilm even in the oxic surface zone in all states from single scattered cells to clustered cells. The higher fluorescence intensity and abundance of SRB probe-stained cells were found in the middle part of the biofilm. This result corresponded well with O2 and H2S concentration profiles measured by microelectrodes, showing sulfate reduction was restricted to a narrow anaerobic zone located about 500 μm below the biofilm surface. Results of the MPN and potential sulfate reducing activity (culture-dependent approaches) indicated a similar distribution of cultivable SRB in the biofilm. The majority of the general SRB probe-stained cells were hybridized with SRB 660 probe, suggesting that one important member of the SRB in the wastewater biofilm could be the genus Desulfobulbus. An addition of nitrate forced the sulfate reduction zone deeper in the biofilm and reduced the specific sulfate reduction rate as well. The sulfate reduction zone was consequently separated from O2 and NO3- respiration zones. Anaerobic H2S oxidation with NO3- was also induced by addition of nitrate to the medium.


Sign in / Sign up

Export Citation Format

Share Document