Hydrothermal Synthesis and Phase Formation Mechanism of TiO2(B) Nanorods via Alkali Metal Titanate Phase Transformation

2018 ◽  
Vol 283 ◽  
pp. 23-36 ◽  
Author(s):  
Yothin Chimupala ◽  
Rik Drummond-Brydson

Titanium dioxide (B phase) with 1-D structures was successfully fabricated via a hydrothermal method with a subsequent ion-exchange process and calcination. P25, titanium isopropoxide (TTIP), rutile and also anatase were used as Ti precursors in the alkali hydrothermal system. TTIP promoted an elongation of nanorod morphology whereas the other precursors produced short nanorod structures. The different types of titanium precursors did not have any influence on the phase transformation during the fabrication process. Na2Ti6O13 was the primary intermediate product after washing the hydrothermal sample. H2Ti3O7 was the secondary intermediate phase obtained following proton-exchange of Na2Ti6O13 in HNO3 solution. Finally, the TiO2(B) phase was the product of calcination of the secondary intermediate product at 400°C for 5 hr. A phase transformation mechanism is presented based on an investigation of products at each of the steps. The effects of the synthesis conditions on tailoring of the crystal morphology are discussed. The growth direction of the TiO2(B) nanorods was investigated by HR-TEM and SADP. Finally, the metastable phase of TiO2(B) was shown to be transformed to anatase during thermal treatment at temperatures higher than 400°C.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiri Orava ◽  
Shanoob Balachandran ◽  
Xiaoliang Han ◽  
Olga Shuleshova ◽  
Ebrahim Nurouzi ◽  
...  

AbstractA combination of complementary high-energy X-ray diffraction, containerless solidification during electromagnetic levitation and transmission electron microscopy is used to map in situ the phase evolution in a prototype Cu-Zr-Al glass during flash-annealing imposed at a rate ranging from 102 to 103 K s−1 and during cooling from the liquid state. Such a combination of experimental techniques provides hitherto inaccessible insight into the phase-transformation mechanism and its kinetics with high temporal resolution over the entire temperature range of the existence of the supercooled liquid. On flash-annealing, most of the formed phases represent transient (metastable) states – they crystallographically conform to their equilibrium phases but the compositions, revealed by atom probe tomography, are different. It is only the B2 CuZr phase which is represented by its equilibrium composition, and its growth is facilitated by a kinetic mechanism of Al partitioning; Al-rich precipitates of less than 10 nm in a diameter are revealed. In this work, the kinetic and chemical conditions of the high propensity of the glass for the B2 phase formation are formulated, and the multi-technique approach can be applied to map phase transformations in other metallic-glass-forming systems.


2021 ◽  
Vol 10 (3) ◽  
pp. 2389-2395

The copolymerization of propylene oxide (PO) with styrene (St) catalyzed by Maghnite-H+ (Mag-H+) was investigated. Mag-H+, a nontoxic catalyst for cationic polymerization of vinylic and heterocyclic monomers, is a montmorillonite silicate sheet clay. This catalyst was prepared through a straight forward proton exchange process. It was found that Mag-H+ initiates the copolymerization in bulk at room temperature. Various techniques, including H1NMR, 13C-NMR, FT-IR spectroscopy, and Ubbelohde viscometer, were used to elucidate the resulting copolymers' structural characteristics. The effects of the amount of Mag-H+ and propylene oxide were studied. The yield of copolymerization depends on the amount of Mag-H+ used and the reaction time.


2011 ◽  
Vol 675-677 ◽  
pp. 283-286
Author(s):  
Guo Min Mi ◽  
Fumio Saito

Some dry and wet grinding experiments have been respectively conducted on titanium dioxide which is a noble photocatalyst material in a mortar, a tumbling mill and a planetary mill. Anatase is apt to transform to rutile via a metastable phase brookite in every kind of mills in the case of dry grinding. And it hardly takes place for phase transformation from rutile to other forms. It is shown that the kind of mill has not decisive effect on the mechanochemical polymorphic transformation of titanium dioxide, which merely influences the rate of phase transformation. On the other hand, the addition of other liquid media, such as water and acetone, is helpless for phase transformation of anatase. Only anatase can transform to metastable phase brookite by wet grinding. When ground titanium dioxide is heated, the amorphous phase is easier to transform to rutile than metastable phase brookite at lower temperature.


2019 ◽  
Vol 151 ◽  
pp. 252-259 ◽  
Author(s):  
Ling Tang ◽  
Jingjing Liang ◽  
Chuanyong Cui ◽  
Jinguo Li ◽  
Yizhou Zhou ◽  
...  

2020 ◽  
Vol 196 ◽  
pp. 105771 ◽  
Author(s):  
A.B. ElDeeb ◽  
V.N. Brichkin ◽  
Martin Bertau ◽  
Yu A. Savinova ◽  
R.V. Kurtenkov

Sign in / Sign up

Export Citation Format

Share Document