Determination of Contact Pressure during Double-T Section Rolling in Universal Beam Groove

2020 ◽  
Vol 299 ◽  
pp. 546-551
Author(s):  
Danil L. Shvarts ◽  
Sergey O. Nepriakhin

Based on application the physical constraint equations of state of stress and strain of the metal for the isotropic medium, we get expressions for components of stress tensor. The new theoretical method for calculation of contact pressures and rolling force during rolling of double-T section in a universal beam groove was developed. Reliability of the method is confirmed by the results of experimental verification for conditions of rolling of H-beam No 35B1, 40K2 and 45B2 from steel 15CrSiNiCu on the universal beam mill of "NTMK". The average calculation error is 6.4%. The new method is recommended for calculation pass design and technological modes of H-beam rolling on rail-beam and section mills, equipped with universal stands.

Strain ◽  
1973 ◽  
Vol 9 (3) ◽  
pp. 104-112 ◽  
Author(s):  
A. J. DURELLI ◽  
J. BUITRAGO

Author(s):  
Sven H. Reese ◽  
Johannes Seichter ◽  
Dietmar Klucke

The influence of LWR coolant environment to the lifetime of materials has been discussed recent years. Nowadays the consideration of environmentally assisted fatigue is under consideration in Codes and Standards like ASME and the German KTA Rules (e.g. Standard No. 3201.2 and Standard No. 3201.4) by means of so called attention thresholds. Basic calculation procedures in terms of quantifying the influence of LWR coolant environment by the Fen correction factor were proposed by Higuchi and others and are given in NUREG/CR-6909. This paper deals with the application of the proposed assessment procedures of ANL and the application to plant conditions. Therefore conservative assessment procedures are introduced without assuming the knowledge of detailed stress and strain calculations or temperature transients. Additionally, detailed assessment procedures based on Finite-Element calculations, respecting in-service temperature measurements including thermal reference transients and complex operational loading conditions are carried out. Fatigue evaluation of a PWR primary circuit component is used in order to evaluate the influence of plant like conditions numerically. Conclusions regarding the practical application are drawn by means of comparing the ANL approach considering laboratory conditions, conservative assessment procedures for the determination of cumulative fatigue usage factors of plant components and detailed assessment procedures. Plant like loading conditions, complex component geometries, loading scenarios and reference temperature transients shall be taken into account. Practical issues like the determination of the mean temperature or the strain rate have to be considered adequately.


2021 ◽  
pp. 35-40
Author(s):  
Denis Y. Kutovoy ◽  
Igor A. Yatsenko ◽  
Vladimir B. Yavkin ◽  
Aydar N. Mukhametov ◽  
Petr V. Lovtsov ◽  
...  

The actual problem of the possibility of using the equations of state for the gas phase of natural gas at temperatures below 250 K is considered. To solve it, the compressibility coefficients of natural gas obtained experimentally with high accuracy are required. The technique was developed and experimental study was carried out of compressibility factor aiming expanding temperature range of the state equations GERG-2004 and AGA8-DC92. The proposed technique is based on the fact that to assess the applicability of the equation of state, it is sufficient to obtain the relative value of the compressibility coefficient and not to determine its absolute value. The technique does not require complex equipment and provides high accuracy. The technique was tested on nitrogen, argon, air and methane. Uncertainty of determination of the compressibility factor is not greater than 0.1 %. For two different compositions of natural gas, obtained experimental data were demonstrated that the equations of state GERG-2004 and AGA8-92DC provide uncertainty of the calculation of the compressibility coefficient within 0.1 % in the temperature range from 220 K to 250 K and pressure below 5 MPa.


2021 ◽  
Vol 70 (1) ◽  
pp. 43-61
Author(s):  
Arkadiusz Popławski

This paper presents the results of an experimental and numerical study of the perforation of Armox 500T armoured steel. The plate perforation was performed with a pneumatic gun using three types of penetrators. Sharp, spherical and blunt penetrators were used. The use of different geometries of penetrators causes the process of perforation and destruction of plates in a different state of stress and strain, which leads to the appearance of three basic modes of failure. Numerical analyses of the perforation process have been carried out using the Ls-Dyna computational code with an advanced constitutive model of the material and the integrated failure model. The obtained experimental and numerical results were analysed and compared. The failure shape, the level of plastic deformation and the parameters of stress and strain state were analysed.


Sign in / Sign up

Export Citation Format

Share Document