Failure Analysis of Fiber Optic Communication System in Deep-Water Remotely Operated Vehicle ROSUB 6000

2014 ◽  
Vol 48 (3) ◽  
pp. 63-72 ◽  
Author(s):  
Raju Ramesh ◽  
Dharmaraj Sathianarayanan ◽  
Vittal Doss Prakash ◽  
Arumugam Vadivelan ◽  
Sethuraman Ramesh ◽  
...  

AbstractSingle-mode fiber optic systems can play vital roles in cabled deep-water vehicle operations at greater depths (>3,000 m). One kind of single-mode fiber optic system, the ROSUB 6000, is used in a deep-water work-class remotely operated vehicle (ROV). Fiber optic link failure of ROV telemetry and sound navigation and ranging were noticed at a water depth of 3,050 m during the ROSUB 6000 system sea trials. A failure analysis of the fiber optic communication system was carried out with the link data logged during different phases of the deep-sea trials. The results from the failure analysis carried out during deep-sea trials showed an increase in the fiber optic link loss from a depth of 900 m onwards. Further analysis of the fiber optic link loss in the laboratory involved pressure and low-temperature testing of all the subsea components in the ROV telemetry link. From the laboratory pressure test results, it was concluded that pressure was not the root cause of the fiber optic link failure. On further analysis, a complete fiber optic link failure was noticed during the low-temperature testing of the subsea components. Furthermore, the low-temperature testing of the individual subsea components revealed that the fiber optic rotary joint (FORJ) insertion loss increased rapidly at low temperatures. This FORJ insertion loss led to complete failure of the fiber optic links in the ROV. The degradation of index-matching fluid in the FORJ was identified to be the root cause of fiber link failure.

Author(s):  
I. Ladany ◽  
H.J. Wolkstein ◽  
D. Botez ◽  
R.S. Crandall ◽  
B.R. Dornan ◽  
...  

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
I. S. Amiri ◽  
P. G. Kuppusamy ◽  
Ahmed Nabih Zaki Rashed ◽  
P. Jayarajan ◽  
M. R. Thiyagupriyadharsan ◽  
...  

AbstractHigh-speed single-mode fiber-optic communication systems have been presented based on various hybrid multiplexing schemes. Refractive index step and silica-doped germanium percentage parameters are also preserved during their technological boundaries of attention. It is noticed that the connect design parameters suffer more nonlinearity with the number of connects. Two different propagation techniques have been used to investigate the transmitted data rates as a criterion to enhance system performance. The first technique is soliton propagation, where the control parameters lead to equilibrium between the pulse spreading due to dispersion and the pulse shrinking because of nonlinearity. The second technique is the MTDM technique where the parameters are adjusted to lead to minimum dispersion. Two cases are investigated: no dispersion cancellation and dispersion cancellation. The investigations are conducted over an enormous range of the set of control parameters. Thermal effects are considered through three basic quantities, namely the transmission data rates, the dispersion characteristics, and the spectral losses.


Author(s):  
Preetam Suman ◽  
Pallavi Gupta ◽  
Philip B. Kassey ◽  
Neera Saxena ◽  
Yogesh Choudhary ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zizheng Yue ◽  
Wenlin Feng

Abstract In this work, a fiber-optic fluoride-ion-detection Michelson interferometer based on the thin-core fiber (TCF) and no-core fiber (NCF) coated with α-Fe2O3/ZrO2 sensing film is proposed and presented. The single-mode fiber (SMF) is spliced with the TCF and NCF in turn, and a waist-enlarged taper is spliced between them. Then, a silver film is plated on the end face of NCF to enhance the reflection. After the absorption of fluoride ion by the sensing film, the effective refractive index (RI) of the coated cladding will change, which leads to the regular red shift of the interference dip with the increasing fluoride-ion concentration. Thus, the fluoride-ion concentrations can be determined according to the corresponding dip wavelength shifts. The results show that the sensor has an excellent linear response (R 2 = 0.995) with good sensitivity (8.970 nm/ppm) when the fluoride-ion concentration is in the range of 0–1.5 ppm. The response time is about 15 s. The sensor has the advantage of good selectivity, good temperature and pH stabilities, and can be applied to detect fluoride ion effectively.


1998 ◽  
Author(s):  
Ning Zhu ◽  
Peter DeDobbelaere ◽  
Anthony J. Ticknor ◽  
John I. Thackara ◽  
Janelle M. Freeman ◽  
...  

2016 ◽  
Vol 45 (1) ◽  
pp. 0122001
Author(s):  
谢良平 Xie Liangping ◽  
李 瑞 Li Rui ◽  
张 斌 Zhang Bin ◽  
王京献 Wang Jingxian ◽  
张春熹 Zhang Chunxi

Sign in / Sign up

Export Citation Format

Share Document