Design of a 3-D Printed, Modular Lateral Line Sensory System for Hydrodynamic Force Estimation

2017 ◽  
Vol 51 (5) ◽  
pp. 103-115 ◽  
Author(s):  
Kevin Nelson ◽  
Kamran Mohseni

AbstractThis paper presents a sensory system that is biologically inspired by the lateral line sensory system found in fish. This artificial lateral line system provides sensory information to be used in vehicle control algorithms, both to reduce model complexity and to measure hydrodynamic disturbances. The system presented in this paper is a modular implementation that can fit around a vehicle without requiring modifications to the hull. The design and manufacturing processes are presented in detail along with considerations for sensor placement and port spacing. An algorithm for calculating the hydrodynamic forces acting on the surface of a vehicle is derived and experimentally validated. An underwater motion capture system and strain sensors are used to calculate a reference hydrodynamic force that compares favorably with the hydrodynamic force calculated by the lateral line system.

Zoomorphology ◽  
2020 ◽  
Author(s):  
Harald Ahnelt ◽  
David Ramler ◽  
Maria Ø. Madsen ◽  
Lasse F. Jensen ◽  
Sonja Windhager

AbstractThe mechanosensory lateral line of fishes is a flow sensing system and supports a number of behaviors, e.g. prey detection, schooling or position holding in water currents. Differences in the neuromast pattern of this sensory system reflect adaptation to divergent ecological constraints. The threespine stickleback, Gasterosteus aculeatus, is known for its ecological plasticity resulting in three major ecotypes, a marine type, a migrating anadromous type and a resident freshwater type. We provide the first comparative study of the pattern of the head lateral line system of North Sea populations representing these three ecotypes including a brackish spawning population. We found no distinct difference in the pattern of the head lateral line system between the three ecotypes but significant differences in neuromast numbers. The anadromous and the brackish populations had distinctly less neuromasts than their freshwater and marine conspecifics. This difference in neuromast number between marine and anadromous threespine stickleback points to differences in swimming behavior. We also found sexual dimorphism in neuromast number with males having more neuromasts than females in the anadromous, brackish and the freshwater populations. But no such dimorphism occurred in the marine population. Our results suggest that the head lateral line of the three ecotypes is under divergent hydrodynamic constraints. Additionally, sexual dimorphism points to divergent niche partitioning of males and females in the anadromous and freshwater but not in the marine populations. Our findings imply careful sampling as an important prerequisite to discern especially between anadromous and marine threespine sticklebacks.


For a long time after their discovery in the seventeenth century the lateral-line canals of fishes were considered to be mucus-secreting organs. In 1850 Leydig described sense organs in the lateral-line canals, and this discovery stimulated a keen interest in the investigation of both the morphological and functional features of the lateral-line system. Morphological studies have yielded a thorough understanding of the structure of these organs (Ewart and Mitchell 1892; Cole 1896; Johnson 1917; von Woellwarth 1933). Physiological studies, though numerous, have been less fruitful. An account of the older work was given by Baglioni (1913), and the more recent work is reviewed by Dykgraaf (1933). The only technique until recently available has been the elimination of the sensory system by nerve section and cauterization, and the comparison of the behaviour of intact and operated fishes in response to various stimuli. With so diffuse a structure as the lateral-line system, receiving its nerve supply from the fifth, seventh, ninth and tenth cranial nerves, this method is particularly inadequate, and involves a violent mutilation of the animal. When one considers the crudity of many of these operations, it is not the uncertainty of the results which is remarkable, but rather that some of the conclusions reached should remain valid to-day in the light of far more penetrating experimental analysis. This method of organ elimination could yield at best only an indication of the kind of stimulus that is effective in evoking the excitation of lateral-line receptors. In current textbooks the conclusion of Parker (1904) that the effective stimulus for the lateral line is low-frequency vibration, and that of Hofer (1907) that it is movement of water (i. e. local currents) have received most notice. The observations of Dykgraaf (1933), who employed the more refined methods of von Frisch’s futterdressur technique, support Hofer’s conclusion, and to some extent also Parker’s. Dykgraaf considers the lateral-line system to be an organ of Ferntastsinn , and if this is taken to mean a mechanoreceptor of such sensitivity that it can function both as a touch organ and as a receptor for disturbances coming from a distance, it is undoubtedly a true description, for it is fully confirmed by the direct electrophysiological studies of Hoagland (1933 a, b, c and d ) and of Schriever (1935). The latter, apparently unacquainted with Hoagland’s work, did little more than to confirm several of his observations.


2020 ◽  
Author(s):  
Valentina Saccomanno ◽  
Heather Love ◽  
Amy Sylvester ◽  
Wen-Chang Li

AbstractXenopus laevis has a lateral line mechanosensory system throughout its full life cycle. Previous studies of the tadpole lateral line system revealed that it may play a role in escape behaviour. In this study, we used DASPEI staining to reveal the location of tadpole lateral line neuromasts. Destroying these neuromasts with neomycin resulted in loss of escape responses in tadpoles. We then studied the physiology of anterior lateral line in immobilised tadpoles. Activating the neuromasts behind one eye could evoke asymmetrical motor nerve discharges when the tadpole was resting, suggestive of turning/escape, followed by fictive swimming. When the tadpole was already producing fictive swimming however, anterior lateral line activation reliably led to the termination of swimming. The anterior lateral line had spontaneous afferent discharges at rest, and when activated showed typical adaptation. There were also efferent activities during tadpole swimming, the activity of which was loosely in phase with ipsilateral motor nerve discharges, implying modulation by the motor circuit from the same side. Calcium imaging experiments located sensory interneurons in the primary anterior lateral line nucleus in the hindbrain. Future studies are needed to reveal how sensory information is processed by the central circuit to determine tadpole motor behaviour.Summary statementActivating tadpole anterior lateral line evokes escape responses followed by swimming and halts ongoing swimming. The afferent and efferent activities and sensory interneuron locations in the hindbrain are reported.


2012 ◽  
Vol 107 (10) ◽  
pp. 2581-2593 ◽  
Author(s):  
Julie Goulet ◽  
J. Leo van Hemmen ◽  
Sarah N. Jung ◽  
Boris P. Chagnaud ◽  
Björn Scholze ◽  
...  

Fish and aquatic frogs detect minute water motion by means of a specialized mechanosensory system, the lateral line. Ubiquitous in fish, the lateral-line system is characterized by hair-cell based sensory structures across the fish's surface called neuromasts. These neuromasts occur free-standing on the skin as superficial neuromasts (SN) or are recessed into canals as canal neuromasts. SNs respond to rapid changes of water velocity in a small layer of fluid around the fish, including the so-called boundary layer. Although omnipresent, the boundary layer's impact on the SN response is still a matter of debate. For the first time using an information-theoretic approach to this sensory system, we have investigated the SN afferents encoding capabilities. Combining covariance analysis, phase analysis, and modeling of recorded neuronal responses of primary lateral line afferents, we show that encoding by the SNs is adequately described as a linear, velocity-responsive mechanism. Afferent responses display a bimodal distribution of opposite Wiener kernels that likely reflected the two hair-cell populations within a given neuromast. Using frozen noise stimuli, we further demonstrate that SN afferents respond in an extremely precise manner and with high reproducibility across a broad frequency band (10–150 Hz), revealing that an optimal decoder would need to rely extensively on a temporal code. This was further substantiated by means of signal reconstruction of spike trains that were time shifted with respect to their original. On average, a time shift of 3.5 ms was enough to diminish the encoding capabilities of primary afferents by 70%. Our results further demonstrate that the SNs' encoding capability is linearly related to the stimulus outside the boundary layer, and that the boundary layer can, therefore, be neglected while interpreting lateral line response of SN afferents to hydrodynamic stimuli.


2002 ◽  
Vol 88 (3) ◽  
pp. 1252-1262 ◽  
Author(s):  
Matthew S. Weeg ◽  
Andrew H. Bass

The mechanosensory lateral line of fish is a hair cell based sensory system that detects water motion using canal and superficial neuromasts. The trunk lateral line of the plainfin midshipman fish, Porichthys notatus, only has superficial neuromasts. The posterior lateral line nerve (PLLn) therefore innervates trunk superficial neuromasts exclusively and provides the opportunity to investigate the physiological responses of these receptors without the confounding influence of canal organs. We recorded single-unit activity from PLLn primary afferents in response to a vibrating sphere stimulus calibrated to produce an equal velocity across frequencies. Threshold tuning, isovelocity, and input/output curves were constructed using spike rate and vector strength, a measure of phase locking of spike times to the stimulus waveform. All units responded maximally to frequencies of 20–50 Hz. Units were classified as low-pass, band-pass, broadly tuned, or complex based on the shapes of tuning and isovelocity curves between 20 and 100 Hz. A 100 Hz stimulus caused an increase in spike rate in almost 50%, and significant synchronization in >80%, of all units. Midshipman vocalizations contain significant energy at and below 100 Hz, so these results demonstrate that the midshipman peripheral lateral line system can encode these acoustic signals. These results provide the first direct demonstration that units innervating superficial neuromasts in a teleost fish have heterogeneous frequency response properties, including an upper range of sensitivity that overlaps spectral peaks of behaviorally relevant acoustic stimuli.


Author(s):  
T. S. Kemp

‘The amphibians’ world’ focuses on the amphibians’ sense organs. Amphibians have the eyes, ears, olfactory organs of smell in the nose, and touch receptors common to all vertebrates, but the relative importance of the different senses varies from group to group depending on habitats and modes of life. Anurans have a sensory world most like that of humans; their vision is good, and includes the ability to see colours, and their hearing is acute. Urodeles and caecilians rely much more on their senses of smell and touch. Amphibian larvae have an additional sensory system called the lateral line system. Amphibians use several sensory cues in combination to navigate around their territories.


Author(s):  
Valentina Saccomanno ◽  
Heather M Love ◽  
Amy L Sylvester ◽  
Wen-Chang Li

Xenopus laevis has a lateral line mechanosensory system throughout its full life cycle and a previous study on pre-feeding stage tadpoles revealed that it may play a role in motor responses to both water suction and water jets. Here, we investigated the physiology of the anterior lateral line system in newly hatched tadpoles and the motor outputs induced by its activation in response to brief suction stimuli. High-speed videoing showed tadpoles tended to turn and swim away when strong suction was applied close to the head. The lateral line neuromasts were revealed by using DASPEI staining, and their inactivation with neomycin eliminated tadpole motor responses to suction. In immobilised preparations, suction or electrically stimulating the anterior lateral line nerve reliably initiated swimming but the motor nerve discharges implicating turning was observed only occasionally. The same stimulation applied during ongoing fictive swimming produced a halting response. The anterior lateral line nerve showed spontaneous afferent discharges at rest and increased activity during stimulation. Efferent activities were only recorded during tadpole fictive swimming and were largely synchronous with the ipsilateral motor nerve discharges. Finally, calcium imaging identified neurons with fluorescence increase time-locked with suction stimulation in the hindbrain and midbrain. A cluster of neurons at the entry point of the anterior lateral line nerve in the dorsolateral hindbrain had the shortest latency in their responses, supporting their potential sensory interneuron identity. Future studies need to reveal how the lateral line sensory information is processed by the central circuit to determine tadpole motor behaviour.


Sign in / Sign up

Export Citation Format

Share Document