olfactory organs
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 27)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 23 (1) ◽  
pp. 407
Author(s):  
Su Jeong Song ◽  
Bongkyun Park ◽  
Kyuhyung Jo ◽  
Chan-Sik Kim

Particulate matter (PM) is an environmental hazard that is associated with various human health risks. The olfactory system is directly exposed to PM; therefore, the influence of PM exposure on olfactory function must be investigated. In this study, we propose a zebrafish olfactory model to evaluate the effects of exposure to diesel particulate matter (DPM), which was labeled Korean diesel particulate matter (KDP20). KDP20 comprises heavy metals and polycyclic aromatic hydrocarbons (PAHs). KDP20 exposed olfactory organs exhibited reduced cilia and damaged epithelium. Olfactory dysfunction was confirmed using an odor-mediated behavior test. Furthermore, the olfactory damage was analyzed using Alcian blue and anti-calretinin staining. KDP20 exposed olfactory organs exhibited histological damages, such as increased goblet cells, decreased cell density, and calretinin level. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that PAHs exposure related genes (AHR2 and CYP1A) were upregulated. Reactive oxidation stress (ROS) (CAT) and inflammation (IL-1B) related genes were upregulated. Furthermore, olfactory sensory neuron (OSN) related genes (OMP and S100) were downregulated. In conclusion, KDP20 exposure induced dysfunction of the olfactory system. Additionally, the zebrafish olfactory system exhibited a regenerative capacity with recovery conditions. Thus, this model may be used in future investigating PM-related diseases.


2021 ◽  
Vol 15 ◽  
Author(s):  
Wan-Ying Dong ◽  
Bing Wang ◽  
Gui-Rong Wang

The olfactory sensing system of the syrphid fly Eupeodes corollae is essential in pollination and prey localization, but little is known about the ultrastructural organization of their olfactory organs. In this study, the morphology, distribution, and ultrastructural organization of antennal sensilla of E. corollae in both sexes were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Neuronal responses of a subtype of sensilla basiconica to floral scent compounds were recorded by single sensillum recording (SSR). Ten morphological types, including Böhm bristles, sensilla chaetica, microtrichiae, sensilla trichodea, sensilla basiconica, sensilla clavate, sensilla coeloconica, sensilla styloconica, sensilla placodea, and sensory pit, were identified. Except for Böhm bristles and sensilla chaetica, which were distributed on the scape and pedicel of E. corollae antennae, innervated sensilla were densely distributed on the flagellum, a vital sensory organ. Further, observing ultrastructural organization showed that the sensilla trichodea, basiconica, and clavate are single-walled with multiple nanoscale pores perforating the cuticle. Sensilla coeloconica are double-walled and have no wall pores, but instead, have longitudinal grooves along with the pegs. Sensilla chaetica, Böhm bristles, and microtrichiae did not have wall pores on the cuticle or sensory cells at the base. The SSR results indicated that neuron B housed in the subtype of sensilla basiconica I (SBI) mainly responded to methyl eugenol and other aromatic compounds. Overall, our results provide valuable information to understand the morphology and ultrastructure of antennal sensilla from E. corollae. These findings are beneficial for the studies of the neuronal function map of olfactory sensilla and for determining evolutionary relationships in Diptera.


Author(s):  
Gautam Reddy ◽  
Venkatesh N. Murthy ◽  
Massimo Vergassola

Fluid turbulence is a double-edged sword for the navigation of macroscopic animals, such as birds, insects, and rodents. On one hand, turbulence enables pheromone communication among mates and the possibility of locating food by their odors from long distances. Molecular diffusion would indeed be unable to spread odors over relevant distances in natural conditions. On the other hand, turbulent flows are hard to predict, and learning effective maneuvers to navigate them is challenging, as we discuss in this review. We first provide a summary of the olfactory organs that sense airborne or surface-bound odors, as well as the computational tasks that animals face when extracting information useful for navigation from an olfactory signal. A compendium of the dynamics of turbulent transport emphasizes those aspects that directly impact animals’ behavior. The state of the art on navigational strategies is discussed, followed by a concluding section dedicated to future challenges in the field. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Ting-Ru Mao ◽  
Ye-Wei Liu ◽  
Mariana M. Vasconcellos ◽  
Marcio R. Pie ◽  
Gajaba Ellepola ◽  
...  

Troglomorphism-morphological adaptation enabling life in constant darkness of caves, such as loss of pigment, reduced eyesight or blindness, over-developed tactile and olfactory organs has long intrigued biologists. However, inferring the proximate and ultimate mechanisms driving the evolution of troglomorphism in freshwater fish requires a sound understanding of the evolutionary relationships among surface, troglomorphic, and intermediate lineages. We use Restriction Site Associated DNA Sequencing (RADseq) to probe deeper into the evolution of the Sinocyclocheilus fishes of China. They comprise the largest cavefish diversification in the world with a remarkable array of derived troglomorphic traits, and are currently considered as an emerging multi-species model system to study evolutionary novelty. We sequenced a total of 120 individuals from throughout the Sinocyclocheilus distribution. The data comprised a total of 646,497 bp per individual, including 4378 loci and 67,983 SNPs (61,023 parsimony-informative) shared across more than at least 114 individuals at a given locus. Phylogenetic analyses using either the concatenated RAD loci (RAxML) or the SNPs only under a coalescent model (SVDquartets) showed a high degree of congruence and high node support (> 95) for most nodes in the phylogeny. The major clades we recovered conform to a pattern established previously using Sanger-based mt-DNA sequences, however, with a few notable exceptions. With an increased representation of the genome sequenced, we now recognize 6 major clades in this group, two additional clades than before. The blind cavefish S. tianlinensis and the micro-eyed S. microphthalmus are now recognized as distinct clades due to their deep divergence from other clades. A Bayes factor delimitation (BFD) analysis showed support for 21 species, recognizing 19 previously described species and two putative new cryptic ones. Two species whose identity were previously disputed, S. furcodorsalis and S. tianeensis, are supported here as distinct species. Our multi-species calibrated tree in SNAPP suggests that the genus Sinocyclocheilus originated around 10.5 Mya, but most speciation events happened in the last 2 Mya, likely favored by the uplift of Qinghai-Tibetan Plateau and a climate driven aridification event forcing cave occupation during this period. These results provide a firm basis for future comparative studies on the evolution of Sinocyclocheilus and its adaptations to cave life.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qiuyan Chen ◽  
Xiaolan Liu ◽  
Song Cao ◽  
Baiwei Ma ◽  
Mengbo Guo ◽  
...  

The olfactory system of insects is essential in many crucial behaviors, such as host seeking, mate recognition, and locating oviposition sites. Lepidopteran moths possess two main olfactory organs, including antennae and labial palps. Compared to antennae, the labial palps are relatively specific and worthy of further investigation due to the labial-palp pit organ (LPO), which contains a large number of sensilla located on the tip segment. The fall armyworm, Spodoptera frugiperda, is a worldwide lepidopteran pest, which can damage more than 350 plants and cause significant economic losses. In this study, we surveyed the structure of the labial palps and LPO of S. frugiperda using a super-high magnification lens zoom 3D microscope. Then, the distribution and fine structure of sensilla located in the LPO of S. frugiperda were investigated using scanning electron microscopy. Subsequently, the electrophysiological responses of labial palps to CO2 and 29 plant volatiles were recorded by using electrolabialpalpography. Our results showed the fine structure of labial palps, the LPO, and the sensilla located in the LPO of S. frugiperda. Moreover, we demonstrated that the labial palps are olfactory organs that respond to both CO2 and other volatile compounds. Our work established a foundation for further study of the roles of labial palps in insect olfactory related behaviors. Further investigations on the function of labial palps and their biological roles together with CO2 and volatile compound responses in S. frugiperda are necessary, as they may provide better insect behavioral regulators for controlling this pest.


2021 ◽  
Author(s):  
Kathleen E Whitlock ◽  
M. Fernanda Palominos ◽  
Danissa Candia ◽  
Jorge Torres-Paz

For decades we have known that the brain "drains" through the subarachnoid space following a route that crosses the cribriform plate to the nasal mucosa and cervical lymph nodes. Yet little is known about the potential role of the olfactory epithelia and associated lymphatic vasculature in the immune response. To better understand the immune response in the olfactory organs we used cell-specific fluorescent reporter lines in dissected, intact adult brains to visualize blood-lymphatic vasculature and neutrophils in the olfactory sensory system. Here we show that the extensive blood vasculature of the olfactory organs is associated with a lymphatic cell type resembling high endothelial venules (HEVs) of the lymph nodes in mammals and a second resembling Mural Lymphatic Endothelial Cells (muLECs) that extended from the brain to the peripheral olfactory epithelia. Surprisingly, the olfactory organs contained the only neutrophil populations observed in the brain. Damage to the olfactory epithelia resulted in a rapid increase of neutrophils within the olfactory organs as well as the appearance of neutrophils in the brain suggesting that neutrophils enter the brain in response to damage. Analysis of cell division during and after damage showed an increase in BrdU labeling in the olfactory epithelia and a subset of the neutrophils. Our results reveal a unique population of neutrophils in the olfactory organs that are associated with an extensive lymphatic vasculature suggesting a dual olfactory-immune function for this unique sensory system.


Author(s):  
T. S. Kemp

‘The amphibians’ world’ focuses on the amphibians’ sense organs. Amphibians have the eyes, ears, olfactory organs of smell in the nose, and touch receptors common to all vertebrates, but the relative importance of the different senses varies from group to group depending on habitats and modes of life. Anurans have a sensory world most like that of humans; their vision is good, and includes the ability to see colours, and their hearing is acute. Urodeles and caecilians rely much more on their senses of smell and touch. Amphibian larvae have an additional sensory system called the lateral line system. Amphibians use several sensory cues in combination to navigate around their territories.


Author(s):  
Jakub Dymek ◽  
Pilar Muñoz ◽  
Elvira Mayo-Hernández ◽  
Michał Kuciel ◽  
Krystyna Żuwała

2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Hyun Tae Kim ◽  
Jong Young Park

AbstractThe olfactory organs of two African lungfishes,Protopterus amphibiusandP. dolloi, were investigated using a stereo microscope and a compound light microscope and were described anatomically, histologically, and histochemically. Like other lungfishes, these species present the following general features: i) elongated olfactory chamber (OC), ii) anterior nostril at the ventral tip of the upper lip, iii) posterior nostril on the palate of the oral cavity, iv) lamellae with multiple cell types such as olfactory receptor neurons, supporting cells, basal cells, lymphatic cells, and mucous cells (MC), and vi) vomero-like epithelial crypt (VEC) made of glandular epithelium (GE) and crypt sensory epithelium. Some of these features exhibit differences between species: MCs are abundant in both the lamellar and inner walls of the OC inP. amphibiusbut occur only in lamellae inP. dolloi. On the other hand, some between feature differences are consistent across species: the GE of bothP. amphibiusandP. dolloiis strongly positive for Alcian blue (pH 2.5)-periodic acid Schiff (deep violet coloration), and positive with hematoxylin and eosin and with Masson’s trichrome (reddish-brown staining), unlike the MCs of the two species which stain dark red with both Alcian blue (pH 2.5)-periodic acid Schiff and Masson’s trichrome but respond faintly to hematoxylin and eosin. The differing abundance of MCs in the two lungfishes might reflect different degrees in aerial exposure of the olfactory organ, while the neutral and acid mucopolysaccharide-containing VEC, as indicated by staining properties of the MCs, is evolutionary evidence thatP. amphibiusandP. dolloiare the closest living relatives to tetrapods, at least in the order Dipnoi.


Sign in / Sign up

Export Citation Format

Share Document