First record of Euscelidius variegatus (Hemiptera: Cicadellidae) in eastern North America

2019 ◽  
Vol 151 (5) ◽  
pp. 648-650
Author(s):  
Jean-Philippe Parent ◽  
Lori Bittner ◽  
Joel H. Kits

AbstractEuscelidius variegatus (Kirschbaum) (Hemiptera: Cicadellidae) is a leafhopper known to vector phytoplasmas in cultivated vines (Vitis vinifera Linnaeus (Vitaceae)) of western Europe. Its occurrence has been recorded in western North America more than 60 years ago, but so far not in eastern North America, including Canada. In the last 15 years, three specimens have been found in Ontario near and around vineyards. Here we report the first record of E. variegatus in Canada and eastern North America.

Check List ◽  
2020 ◽  
Vol 16 (2) ◽  
pp. 307-316
Author(s):  
Annegret Nicolai ◽  
Robert G. Forsyth

We report for the first time the terrestrial slug Prophysaon andersonii (J.G. Cooper, 1872) from Quebec, Canada. Two specimens were collected in Parc national du Bic. The identification was determined by the external morphology and partial-COI gene sequence data. The genus Prophysaon is endemic to western North America, and the new record indisputably represents an introduction. No species of Prophysaon has, until now, been noticed in North America from outside its native range.


1998 ◽  
Vol 130 (6) ◽  
pp. 905-906 ◽  
Author(s):  
P. Katsoyannos ◽  
M.T. Aliniazee

The parasitic tachinid fly Strongygaster triangulifera (Loew) is widely distributed in North America (Stone et al. 1965). It parasitizes several Coleoptera and sometimes species of other orders such as Lepidoptera, Dermaptera, and Hemiptera (Sabrosky and Braun 1970). Existing records of S. triangulifera found in coccinellid hosts are from eastern North America. One describes low parasitization levels (<1%) in two indigenous species, Coccinella trifasciata perplexa Mulsant and Coleomegilla maculata lengi Timberlake, in Ontario, Canada (Smith 1960). The other existing record describes fluctuating parasitization levels (3.0–31.1% in 1993 and 0–6.5% in 1994) in the exotic species Harmonia axyridis (Pallas) in North Carolina and Virginia (Nalepa et al. 1996).


2008 ◽  
Vol 8 (5) ◽  
pp. 18323-18384 ◽  
Author(s):  
S. B. Dalsøren ◽  
M. S. Eide ◽  
Ø. Endresen ◽  
A. Mjelde ◽  
G. Gravir ◽  
...  

Abstract. A reliable and up-to-date ship emission inventory is essential for atmospheric scientists quantifying the impact of shipping and for policy makers implementing regulations and incentives for emission reduction. The emission modelling in this study takes into account ship type and size dependent input data for 15 ship types and 7 size categories. Global port arrival and departure data for more than 32 000 merchant ships are used to establish operational profiles for the ship segments. The modelled total fuel consumption amounts to 217 Mt in 2004 of which 11 Mt is consumed in in-port operations. This is in agreement with international sales statistics. The modelled fuel consumption is applied to develop global emission inventories for CO2, NO2, SO2, CO, CH4, VOC (Volatile Organic Compounds), N2O, BC (Black Carbon) and OC (Organic Carbon). The global emissions from ships at sea and in ports are distributed geographically, applying extended geographical data sets covering about 2 million global ship observations and global port data for 32 000 ships. In addition to inventories for the world fleet, inventories are produced separately for the three dominating ship types, using ship type specific emission modelling and traffic distributions. A global Chemical Transport Model (CTM) was used to calculate the environmental impacts of the emissions. We find that ship emissions is a dominant contributor over much of the world oceans to surface concentrations of NO2 and SO2. The contribution is also large over some coastal zones. For surface ozone the contribution is high over the oceans but clearly also of importance over western North America (contribution 15–25%) and western Europe (5–15%). The contribution to tropospheric column ozone is up to 5–6%. The overall impact of ship emissions on global methane lifetime is large due to the high NOx emissions. With regard to acidification we find that ships contribute 11% to nitrate wet deposition and 4.5% to sulphur wet deposition globally. In certain coastal regions the contributions may be in the range 15–50%. In general we find that ship emissions have a large impact on acidic deposition and surface ozone in western North America, Scandinavia, western Europe, western North Africa and Malaysia/Indonesia. For most of these regions container traffic, the largest emitter by ship type, has the largest impact. This is the case especially for the Pacific and the related container trade routes between Asia and North America. However, the contributions from bulk ships and tank vessels are also significant in the above mentioned impact regions. Though the total ship impact at low latitudes is lower, the tank vessels have a quite large contribution at low latitudes and near the Gulf of Mexico and Middle East. The bulk ships are characterized by large impact in Oceania compared to other ship types. In Scandinavia and north-western Europe, one of the major ship impact regions, the three largest ship types have rather small relative contributions. The impact in this region is probably dominated by smaller ships operating closer to the coast. For emissions in ports impacts on NO2 and SO2 seem to be of significance. For most ports the contribution to the two components is in the range 0.5–5%, for a few ports it exceeds 10%. The approach presented provides an improvement in characterizing fleet operational patterns, and thereby ship emissions and impacts. Furthermore, the study shows where emission reductions can be applied to most effectively minimize the impacts by different ship types.


Zootaxa ◽  
2005 ◽  
Vol 1017 (1) ◽  
pp. 25
Author(s):  
ROWLAND M. SHELLEY ◽  
WILLIAM A. SHEAR

The new species, Stenozonium leonardi, the northernmost representative of the Polyzoniidae in western North America and the only one north of the Columbia River, is described from the Olympic Peninsula of Washington; it is isolated by some 180 mi (288 km) from S. benedictae Shelley, 1998, in coastal Oregon. Stenozonium alone among the four polyzoniidan genera in western North America consists of entirely allopatric and widely separated species, with one apiece in California, Oregon, and Washington-evidence that it diversified earlier than its ordinal counterparts.


1990 ◽  
Vol 61 (3-4) ◽  
pp. 193-208 ◽  
Author(s):  
S. E. Hough ◽  
K. H. Jacob ◽  
L. Seeber

Abstract A key element in the assessment of seismic hazard is the estimation of how energy propagation from a given earthquake is affected by crustal structure near the receiver and along the more distant propagation path. In this paper, we present data from a variety of sources in eastern North America recorded at epicentral distances of a few to 800 km, and characterize and interpret systematic features. Site effects have been classically considered in terms of amplification either within a sediment-filled valley or from a single topographic feature (Geli et al., 1988). We present evidence of high frequency (5–30 Hz) resonances observed in hard-rock recordings of both body waves and Lg waves, and suggest that site effect should be expanded regionally to include structural and topographic information over sufficiently large areas to include several wavelengths of any features that may interact with seismic waves in the frequency range of interest. A growing body of evidence suggests that ground motions at high frequencies recorded at large epicentral distances in eastern North America are controlled by resonance effects. We hypothesize that a fundamental difference between eastern and western North America spectra stems from a combination of differences in the character of topography and near-surface structure. Active tectonics of western North America gives rise to a complex crust that scatters seismic energy in a random manner and results in very effective attenuation of high frequencies. The older eastern North American crust contains scatterers that are more ordered, with characteristic length scales that give rise to resonance phenomena in the frequency band critical for earthquake hazard. We present preliminary analysis of topographic data from the Adirondack Mountains in New York that demonstrates the existence of characteristic length scales on the order of up to 1–3 kilometers. Features with these length scales will effectively scatter energy at frequencies in the 1 to 10 Hz range.


2009 ◽  
Vol 9 (6) ◽  
pp. 2171-2194 ◽  
Author(s):  
S. B. Dalsøren ◽  
M. S. Eide ◽  
Ø. Endresen ◽  
A. Mjelde ◽  
G. Gravir ◽  
...  

Abstract. A reliable and up-to-date ship emission inventory is essential for atmospheric scientists quantifying the impact of shipping and for policy makers implementing regulations and incentives for emission reduction. The emission modelling in this study takes into account ship type and size dependent input data for 15 ship types and 7 size categories. Global port arrival and departure data for more than 32 000 merchant ships are used to establish operational profiles for the ship segments. The modelled total fuel consumption amounts to 217 Mt in 2004 of which 11 Mt is consumed in in-port operations. This is in agreement with international sales statistics. The modelled fuel consumption is applied to develop global emission inventories for CO2, NO2, SO2, CO, CH4, VOC (Volatile Organic Compounds), N2O, BC (Black Carbon) and OC (Organic Carbon). The global emissions from ships at sea and in ports are distributed geographically, applying extended geographical data sets covering about 2 million global ship observations and global port data for 32 000 ships. In addition to inventories for the world fleet, inventories are produced separately for the three dominating ship types, using ship type specific emission modelling and traffic distributions. A global Chemical Transport Model (CTM) was used to calculate the environmental impacts of the emissions. We find that ship emissions is a dominant contributor over much of the world oceans to surface concentrations of NO2 and SO2. The contribution is also large over some coastal zones. For surface ozone the contribution is high over the oceans but clearly also of importance over Western North America (contribution 15–25%) and Western Europe (5–15%). The contribution to tropospheric column ozone is up to 5–6%. The overall impact of ship emissions on global methane lifetime is large due to the high NOx emissions. With regard to acidification we find that ships contribute 11% to nitrate wet deposition and 4.5% to sulphur wet deposition globally. In certain coastal regions the contributions may be in the range 15–50%. In general we find that ship emissions have a large impact on acidic deposition and surface ozone in Western North America, Scandinavia, Western Europe, western North Africa and Malaysia/Indonesia. For most of these regions container traffic, the largest emitter by ship type, has the largest impact. This is the case especially for the Pacific and the related container trade routes between Asia and North America. However, the contributions from bulk ships and tank vessels are also significant in the above mentioned impact regions. Though the total ship impact at low latitudes is lower, the tank vessels have a quite large contribution at low latitudes and near the Gulf of Mexico and Middle East. The bulk ships are characterized by large impact in Oceania compared to other ship types. In Scandinavia and north-Western Europe, one of the major ship impact regions, the three largest ship types have rather small relative contributions. The impact in this region is probably dominated by smaller ships operating closer to the coast. For emissions in ports impacts on NO2 and SO2 seem to be of significance. For most ports the contribution to the two components is in the range 0.5–5%, for a few ports it exceeds 10%. The approach presented provides an improvement in characterizing fleet operational patterns, and thereby ship emissions and impacts. Furthermore, the study shows where emission reductions can be applied to most effectively minimize the impacts by different ship types.


Sign in / Sign up

Export Citation Format

Share Document