Testing for trade-offs between flight and reproduction in the mountain pine beetle (Coleoptera: Curculionidae) on two pine (Pinaceae) hosts

2019 ◽  
Vol 151 (3) ◽  
pp. 298-310 ◽  
Author(s):  
Asha Wijerathna ◽  
Caroline Whitehouse ◽  
Heather Proctor ◽  
Maya Evenden

AbstractMountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), adults fly to disperse before host colonisation. The effect of flight on reproduction was tested by comparing the number and quality of offspring from beetles flown on flight mills to that of unflown control beetles. Beetles reproduced in bolts of their native host, lodgepole pine (Pinus contorta var. latifolia Engelmann (Pinaceae)), or a novel host, jack pine (Pinus banksiana Lambert (Pinaceae)). Bolts infested by control beetles produced more offspring overall than bolts with flown beetles. The effect of pine species on the number of offspring produced per bolt varied by individual tree. Flown adults produced fewer offspring compared to control parents in all bolts in jack pine regardless of the tree, but tree-level variation was visible in lodgepole pine. An interaction between flight treatment and tree host affected beetle body condition. More offspring emerged from jack pine, but higher quality offspring emerged from lodgepole pine. The offspring sex ratio was female-biased regardless of parental flight treatment. This study reveals trade-offs between flight and reproduction in mountain pine beetle as measured at the level of the bolt.


2007 ◽  
Vol 85 (3) ◽  
pp. 316-323 ◽  
Author(s):  
A.V. Rice ◽  
M.N. Thormann ◽  
D.W. Langor

Mountain pine beetle (MPB) is the most serious pest of lodgepole pine in western Canada, and it is predicted to spread into boreal jack pine within the next few years. Colonization of host trees by MPB-associated blue-stain fungi appears to be required for successful beetle reproduction. Three species of blue-stain fungi, Grosmannia clavigera (Robinson-Jeffery and Davidson) Zipfel, de Beer, and Wingfield (≡ Ophiostoma clavigerum (Robinson-Jeffery and Davidson) Harrington), Ophiostoma montium (Rumbold) von Arx, and Leptographium longiclavatum Lee, Kim, and Breuil, are associated with MPB in Alberta. In inoculation experiments, all three fungi caused lesions on lodgepole pine, jack pine, and their hybrids. On average, lesions were longer on jack pine and hybrids than on lodgepole pine, suggesting that fungal development will not be a barrier to MPB success in these trees. Differences in lesion length caused by the three fungal species were minimal, with significant differences observed only on hybrid pine and between O. montium and the other fungal treatments. On average, lesions caused by combinations of the three fungi (pair-wise and all together) did not differ significantly in length from those caused by the fungi singly, and none of the fungal species competitively excluded any of the others. These observations suggest that all three species are pathogenic to boreal pines and that the virulence of all three species is comparable.



Forests ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 18 ◽  
Author(s):  
José Negrón

Research Highlights: The biology of mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, in Colorado’s lodgepole pine forests exhibits similarities and differences to other parts of its range. Brood emergence was not influenced by stand density nor related to tree diameter. The probability of individual tree attack is influenced by stocking and tree size. Findings have implications for understanding MPB as a disturbance agent and for developing management strategies. Background and Objectives: MPB causes extensive tree mortality of lodgepole pine, Pinus contorta Douglas ex Loudon, across the western US and Canada and is probably the most studied bark beetle in North America. However, most of the current knowledge on the biology and ecology of MPB in lodgepole pine comes from the Intermountain Region of the US and western Canada. Little information is available from Colorado. This is the first study addressing effects of stand stocking levels on the biology of MPB and quantifying phloem consumption. In addition, although data are available on the conditions that foster stand infestation, this is the first study estimating the probability of individual tree attack among stands of known different stocking. Materials and Methods: Studies were conducted in managed lodgepole pine stands in Colorado. Unbaited traps were used to monitor MPB flight across stands of different densities. Cages were used to monitor emergence and bark samples to determine attack densities, and phloem consumption in trees growing under different stocking. Beetle collections were used to determine emergence across the growing season. Tree mortality data from plots of different densities were used to examine the probability of individual tree infestation. Results: More beetles were caught flying through higher density stands. More attacks were observed in lower stocking stands but there were no differences in the number of insects emerging nor phloem consumption. There was no relationship between tree size and beetle emergence. Peak flight occurred in early to mid-August and only one peak of beetle emergence occurred. The probability of tree attack was influenced by stand stocking and tree diameter. Conclusions: In general, aspects of the biology of MPB in Colorado exhibit similarities and differences with other regions. The data suggest the need to more closely examine how MPB functions in stands of different stocking and how the distribution of tree sizes influence the probability of infestation and extent of mortality in stands. Biological characteristics of MPB in Colorado need further examination, particularly as climate change continues to manifest. Baseline information will be critical to refine management approaches, and extend the understanding of how MPB contributes to shape forest composition and structure in Colorado.



2011 ◽  
Vol 5 (Suppl 7) ◽  
pp. O3
Author(s):  
Catherine Cullingham ◽  
Sophie Dang ◽  
Corey Davis ◽  
Barry Cooke ◽  
David Coltman ◽  
...  


1995 ◽  
Vol 127 (6) ◽  
pp. 955-965 ◽  
Author(s):  
H.F. Cerezke

AbstractDuring the 1977–1986 outbreak of mountain pine beetle (Dendroctonus ponderosae) in southwestern Alberta and Saskatchewan, populations of this beetle developed in lodgepole pine and limber pine stands, and threatened to spread northeasterly to the extensive jack pine forests in the central parts of the two provinces. To assess jack pine as a potential new breeding host, I compare egg galleries, brood production, and adult characteristics of D. ponderosae reared in lodgepole, limber, and jack pine logs. Brood productivity, beetle size, sex ratios, and egg gallery characteristics are described for beetle populations reared from naturally infested limber pine logs from southwestern Alberta, and from artificially infested jack pine logs from east-central Alberta and central Saskatchewan. In a field experiment where logs of the three hosts were placed together, adult beetles and their gallery characteristics are described and compared on the three hosts. The results confirm that jack pine is a viable host, that D. ponderosae’s attack characteristics, survival, and progeny on jack pine all appear comparable to those characters observed for beetles reared on lodgepole pine, and that limber pine is highly productive of beetle brood.



2015 ◽  
Vol 148 (1) ◽  
pp. 68-82 ◽  
Author(s):  
Colin L. Myrholm ◽  
David W. Langor

AbstractA novel “rearing-tube” method was developed and used to investigate the performance of mountain pine beetle (MPB),Dendroctonus ponderosaeHopkins (Coleoptera: Curculionidae: Scolytinae), with its three main ophiostomatalean fungal symbionts,Grosmannia clavigera(Robinson-Jeffrey and Davidson) Zipfel, de Beer, and Wingfield (Ophiostomataceae),Ophiostoma montium(Rumbold) von Arx (Ophiostomataceae), andLeptographium longiclavatumLee, Kim, and Breuil (Ophiostomataceae). Transparent glass tubes filled with sterile ground jack pine (Pinus banksianaLambert; Pinaceae) phloem and sapwood (9:1 ratio) were used to rear MPB from egg to adult with each fungus under controlled environmental conditions. Mountain pine beetle mortality was higher and development longer in fungus-free controls compared to fungal treatments. Among fungal treatments, insects developed faster, constructed shorter larval galleries, and had fewer supernumerary instars withL. longiclavatum.Insect survival was not affected by fungal treatments. Hyphal extension through the rearing medium was fastest forL. longiclavatum. Phloem nitrogen was reduced significantly by the presence ofL. longiclavatum.Results support the hypothesis that ophiostomatalean symbionts provide benefits to MPB. The rearing-tube method is useful to tease apart confounding interspecific interactions between bark beetles and symbiotic fungus species.





Author(s):  
Howard L. Williams ◽  
Sharon M. Hood ◽  
Chrisopher R. Keyes ◽  
Joel M. Egan


2011 ◽  
Vol 41 (12) ◽  
pp. 2403-2412 ◽  
Author(s):  
Daniel M. Kashian ◽  
Rebecca M. Jackson ◽  
Heather D. Lyons

Extensive outbreaks of the mountain pine beetle ( Dendroctonus ponderosae Hopkins) will alter the structure of many stands that will likely be attacked again before experiencing a stand-replacing fire. We examined a stand of lodgepole pine ( Pinus contorta var. latifolia Engelm. ex S. Watson) in Grand Teton National Park currently experiencing a moderate-level outbreak and previously attacked by mountain pine beetle in the 1960s. Consistent with published studies, tree diameter was the main predictor of beetle attack on a given tree, large trees were preferentially attacked, and tree vigor, age, and cone production were unimportant variables for beetle attack at epidemic levels. Small trees killed in the stand were killed based mainly on their proximity to large trees and were likely spatially aggregated with large trees as a result of the previous outbreak. We concluded that the driving factors of beetle attack and their spatial patterns are consistent across outbreak severities but that stand structure altered by the previous outbreak had implications for the current outbreaks in the same location. This study should catalyze additional research that examines how beetle-altered stand structure affects future outbreaks — an important priority for predicting their impacts under climate change scenarios that project increases in outbreak frequency and extent.





2008 ◽  
Vol 101 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Xuejun Pan ◽  
Dan Xie ◽  
Richard W. Yu ◽  
Jack N. Saddler


Sign in / Sign up

Export Citation Format

Share Document