host range expansion
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 22)

H-INDEX

23
(FIVE YEARS 4)

Author(s):  
M. Götz ◽  
U. Braun

AbstractGolovinomyces longipes is a widespread powdery mildew on Solanaceae (Nicotiana, Petunia and Solanum spp.). In the past, it has been reported only once on Verbena (Verbenaceae), a non-solanaceaous host. Recently, this powdery mildew has been found on the composite Matricaria chamomilla. The identification of the powdery mildew species on this unusual host has been proved by morphological studies and DNA sequence analysis. Both datasets coincide with the characteristic data for G. longipes on Solanaceae. First inoculation experiments with further composites resulted in an infection of Brachyscome hybrid ‘Surdaisy’. To our knowledge, this is the first report of G. lonigpes on hosts belonging to the important family of Asteraceae and an additional proof of the broader host range of G. longipes beyond the Solanaceae.


2021 ◽  
Vol 22 (14) ◽  
pp. 7440
Author(s):  
Shraddha K. Dahale ◽  
Daipayan Ghosh ◽  
Kishor D. Ingole ◽  
Anup Chugani ◽  
Sang Hee Kim ◽  
...  

Pseudomonas syringae-secreted HopA1 effectors are important determinants in host range expansion and increased pathogenicity. Their recent acquisitions via horizontal gene transfer in several non-pathogenic Pseudomonas strains worldwide have caused alarming increase in their virulence capabilities. In Arabidopsis thaliana, RESISTANCE TO PSEUDOMONAS SYRINGAE 6 (RPS6) gene confers effector-triggered immunity (ETI) against HopA1pss derived from P. syringae pv. syringae strain 61. Surprisingly, a closely related HopA1pst from the tomato pathovar evades immune detection. These responsive differences in planta between the two HopA1s represents a unique system to study pathogen adaptation skills and host-jumps. However, molecular understanding of HopA1′s contribution to overall virulence remain undeciphered. Here, we show that immune-suppressive functions of HopA1pst are more potent than HopA1pss. In the resistance-compromised ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) null-mutant, transcriptomic changes associated with HopA1pss-elicited ETI are still induced and carry resemblance to PAMP-triggered immunity (PTI) signatures. Enrichment of HopA1pss interactome identifies proteins with regulatory roles in post-transcriptional and translational processes. With our demonstration here that both HopA1 suppress reporter-gene translations in vitro imply that the above effector-associations with plant target carry inhibitory consequences. Overall, with our results here we unravel possible virulence role(s) of HopA1 in suppressing PTI and provide newer insights into its detection in resistant plants.


2020 ◽  
pp. PHYTO-09-20-042
Author(s):  
Adel Pordel ◽  
Sebastien Ravel ◽  
Florian Charriat ◽  
Pierre Gladieux ◽  
Sandrine Cros-Arteil ◽  
...  

Blast disease is a notorious fungal disease leading to dramatic yield losses on major food crops such as rice and wheat. The causal agent, Pyricularia oryzae, encompasses different lineages, each having a different host range. Host shifts are suspected to have occurred in this species from Setaria spp. to rice and from Lolium spp. to wheat. The emergence of blast disease on maize in Iran was observed for the first time in the north of the country in 2012. We later identified blast disease in two additional regions of Iran: Gilan in 2013 and Golestan in 2016. Epidemics on the weed barnyard grass (Echinochloa spp.) were also observed in the same maize fields. Here, we showed that P. oryzae is the causal agent of this disease on both hosts. Pathogenicity assays in the greenhouse revealed that strains from maize can infect barnyard grass and conversely. However, genotyping with simple sequence repeat markers and comparative genomics showed that strains causing field epidemics on maize and on barnyard grass are different, although they belong to the same previously undescribed clade of P. oryzae. Phylogenetic analyses including these strains and a maize strain collected in Gabon in 1985 revealed two independent host-range expansion events from barnyard grass to maize. Comparative genomics between maize and barnyard grass strains revealed the presence or absence of five candidate genes associated with host specificity on maize, with the deletion of a small genomic region possibly responsible for adaptation to maize. This recent emergence of P. oryzae on maize provides a case study to understand host range expansion. Epidemics on maize raise concerns about potential yield losses on this crop in Iran and potential geographic expansion of the disease.


PHAGE ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 87-90 ◽  
Author(s):  
Maarten Boon ◽  
Dominique Holtappels ◽  
Cédric Lood ◽  
Vera van Noort ◽  
Rob Lavigne

2020 ◽  
Vol 46 (5-6) ◽  
pp. 544-556
Author(s):  
Sylvester R. Atijegbe ◽  
Sarah Mansfield ◽  
Colin M. Ferguson ◽  
Susan P. Worner ◽  
Michael Rostás

Sign in / Sign up

Export Citation Format

Share Document